精英家教网 > 高中数学 > 题目详情

【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.

1)求圆O的方程;

2)圆Ox轴交于EF两点,圆O内的动点D使得DEDODF成等比数列,求的取值范围.

【答案】1x2+y2=2 2[10

【解析】

1)化简圆M的方程为:x2+y22x2y60,为标准方程,求出圆心和半径,判定圆心O在圆M内部,因而内切,用|MN|Rr,求圆O的方程;

2)根据圆Ox轴交于EF两点,圆内的动点D使得|DE||DO||DF|成等比数列,列出关系,再求的取值范围;

1)圆M的方程可整理为:(x12+y-12=8

故圆心M11),半径R=2

O的圆心为O00),

因为|MO|=2,所以点O在圆M内,

故圆O只能内切于圆M

设其半径为r.因为圆O内切于圆M

所以有:|MO|=|R-r|,即=|2r|,解得r=r=3(舍去);

所以圆O的方程为x2+y2=2

2)由题意可知:E0),F0).

Dxy),由|DE||DO||DF|成等比数列,

|DO|2=|DE|×|DF|

即:×=x2+y2

整理得:x2y2=1

=yy=x2+y22=2y21

由于点D在圆N内,

故有,由此得y2

的取值范围是[10).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知

求证(1)直线平面

(2)平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知盒子中装有红色、蓝色纸牌各100张,每种颜色纸牌均含标数为的纸牌各一张,两种颜色纸牌的标数总和记为.

对于给定的正整数,若能从盒子中取出若干张纸牌,使其标数之和恰为,则称其为一种取牌“n—方案”.记不同的n—方案种数为.试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了诊断高三学生在市一模考试中文科数学备考的状况,随机抽取了50名学生的市一模数学成绩进行分析,将这些成绩分为九组,第一组[6070),第二组[7080)……,第九组[140150],并绘制了如图所示的频率分布直方图.

1)试求出的值并估计该校文科数学成绩的众数和中位数;

2)现从成绩在[120150]的同学中随机抽取2人进行谈话,那么抽取的2人中恰好有一人的成绩在[130,140)中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉出现的新型冠状病毒是一种可以通过飞沫传播的变异病毒,某药物研究所为筛查该新型冠状病毒,需要检验血液是否为阳性,现有份血液样本,每份样本取到的可能性均等,有以下两种检验方式:①逐份检验,则需要检验n次;②混合检验,将其中份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份血液全为阴性,因此这k份血液样本检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份血液再逐份检验,此时这k份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阴性还是阳性都是独立的,且每份样本是阳性结果的概率为.

1)假设有5份血液样本,其中只有2份为阳性,若采取逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;

2)现取其中份血液样本,记采用逐份检验方式,样本需要检验的次数为,采用混合检验方式,样本需要检验的总次数为.

i)试运用概率统计知识,若,试求P关于k的函数关系式

ii)若,采用混合检验方式可以使得这k份血液样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F(2,0),过点F的直线交椭圆于MN两点且MN的中点坐标为

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线l不经过点P(0,b)且与C相交于AB两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数.

1)若方程有两不等实根,求的范围;

2)若上的最小值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从甲地到乙地的公路里程约为240(单位:km.某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:

x

0

40

60

120

Q

0

20

1)你认为哪一个是符合实际的函数模型,请说明理由;

2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?

查看答案和解析>>

同步练习册答案