精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,平面平面为等边三角形,

分别为的中点.

(I)求证:平面

(II)求证:平面平面

(III)求三棱锥的体积.

【答案】(I)详见解析(II)详见解析(III)

【解析】

试题分析:)利用三角形的中位线得出OMVB,利用线面平行的判定定理证明VB平面MOC;()证明OC平面VAB,即可证明平面MOC平面VAB;()利用等体积法求三棱锥A-MOC的体积即可

试题解析:)证明:O,M分别为AB,VA的中点,

OMVB,

VB平面MOCOM平面MOC

VB平面MOC;

)证明:AC=BC,O为AB的中点,

OCAB,

平面VAB平面ABC,平面ABC平面VAB=AB,且OC平面ABC

OC平面VAB,

OC平面MOC

平面MOC平面VAB

)在等腰直角三角形中,

所以.

所以等边三角形的面积.

又因为平面

所以三棱锥的体积等于.

又因为三棱锥的体积与三棱锥的体积相等,

所以三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点椭圆的离心率为是椭圆的右焦点直线的斜率为为坐标原点

(1)求的方程

(2)设过点的动直线相交于两点的面积最大时的直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆八中大学城校区与本部校区之间的驾车单程所需时间为只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:

(分钟)

25

30

35

40

频数(次)

100

150

200

50

以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.

(1)求的分布列与

(2)某天有3位教师独自驾车从大学城校区返回本部校区,记表示这3位教师中驾车所用时间少于的人数,求的分布列与

(3)下周某天老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数(其中为参数).

(1)当时,证明:不是奇函数;

(2)如果是奇函数,求实数的值;

(3)已知,在(2)的条件下,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab都是非零向量,且ab不共线.

(1求证:A,B,D三点共线;

(2) 若kaba+kb共线,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求函数的单调区间及所有零点;

(2)设为函数图象上的三个不同点,且

.问:是否存在实数,使得函数在点处的切线与直线平行?若存在,求出所有满足条件的实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|a|4|b|8ab的夹角是120°.

(1) 计算:① |ab|,② |4a2b|


(2) 当k为何值时,(a2b)⊥(kab)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学共有1000名文科学生参加了该市高三第一次质量检查的考试,其中数学成绩如下表所示:

数学成绩分组

[50,70)

[70,90)

[90,110)

[110,130)

[130,150]

人数

60

400

360

100

(Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,年级将采用分层抽样的方法抽取100

名同学进行问卷调查. 甲同学在本次测试中数学成绩为75分,求他被抽中的概率;

(Ⅱ)年级将本次数学成绩75分以下的学生当作“数学学困生”进行辅导,请根据所提供数据估计“数

学学困生”的人数;

(III)请根据所提供数据估计该学校文科学生本次考试的数学平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知R,函数=.

1时,解不等式>1;

2若关于的方程+=0的解集中恰有一个元素,求的值;

3>0,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

同步练习册答案