精英家教网 > 高中数学 > 题目详情
已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.
(1)-,(2){a|a>1或a=-2-2}

试题分析:(1)根据偶函数性质列等量关系:∵f(x)为偶函数,∴f(-x)=f(x),即log4(4-x+1)-kx=log4(4x+1)+kx,即(2k+1)x=0,∴k=-.(2)先将方程转化为一元二次方程.由 得log4(4x+1)-x=log4 (a·2x-a),即令t=2x,则(1-a)t2+at+1=0,只需其有一正根即可满足题意.①当a=1时,t=-1,不合题意,舍去.②有一正一负根, ,a>1. ③有两根相等,a=-2(+1).
解:(1)∵f(x)为偶函数,∴f(-x)=f(x),
即log4(4-x+1)-kx=log4(4x+1)+kx,
即(2k+1)x=0,∴k=-.          6分
(2)依题意令log4(4x+1)-x=log4 (a·2x-a),
         8分
令t=2x,则(1-a)t2+at+1=0,只需其有一正根即可满足题意.
①当a=1时,t=-1,不合题意,舍去.      9分
②上式有一正一负根t1,t2,
,得a>1.
此时,a·2x-a=>0, ∴a>1. ------11分
③上式有两根相等,即Δ=0⇒a=±2-2,此时t=
若a=2(-1),则有t=<0,此时方程(1-a)t2+at+1=0无正根,
故a=2(-1)舍去;       13分
若a=-2(+1),则有t=>0,且a· 2x-a=a(t-1)=a>0,因此a=-2(+1).      15分
综上所述,a的取值范围为{a|a>1或a=-2-2}.          16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+a,其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围.
(2)求证:对于任意的n∈N*,且n>1时,都有lnn>++…+恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数为定义域上的单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数上的正函数.若函数上的正函数,则实数的取值范围为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若在曲线上两个不同点处的切线重合,则称这条切线为曲线的“自公切线”.下列方程:①;②;③;④对应的曲线中存在“自公切线”的有(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知集合A=[0,8],集合B=[0,4],则下列对应关系中,不能看作从A到B的映射的是________.(填写序号)
①f:x→y=x     ②f:x→y=x      ③f:x→y=x     ④f:x→y=x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的定义域为,若函数满足条件:存在,使上的值域是则称为“倍缩函数”,若函数为“倍缩函数”,则的范围是(    )
A.            B.                       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的函数,且对任意实数,恒有,且的最大值为1,则不等式的解集为      .

查看答案和解析>>

同步练习册答案