分析 利用倍角公式及同角三角函数基本关系式可得cosa=$\frac{1-ta{n}^{2}\frac{α}{2}}{1+ta{n}^{2}\frac{α}{2}}$=-$\frac{3}{5}$,结合角的范围即可得解.
解答 解:∵a∈($\frac{π}{2}$,π),
∴$\frac{a}{2}$∈($\frac{π}{4}$,$\frac{π}{2}$),tan$\frac{a}{2}$>0,
∵cosa=$\frac{1-ta{n}^{2}\frac{α}{2}}{1+ta{n}^{2}\frac{α}{2}}$=-$\frac{3}{5}$,整理可得:tan2$\frac{α}{2}$=4,
∴解得:tan$\frac{a}{2}$=2.
故答案为:2.
点评 本题主要考查了倍角公式及同角三角函数基本关系式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 向左平移$\frac{5π}{12}$个单位 | B. | 向左平移$\frac{5π}{6}$个单位 | ||
C. | 向右平移$\frac{5π}{12}$个单位 | D. | 向右平移$\frac{5π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com