精英家教网 > 高中数学 > 题目详情

【题目】已知函数 =f(2x
(1)用定义证明函数g(x)在(﹣∞,0)上为减函数.
(2)求g(x)在(﹣∞,﹣1]上的最小值.

【答案】
(1)证明:

∵2x﹣1≠0x≠0,∴函数g(x)的定义域{x|x∈R且x≠0},

设x1,x2∈(﹣∞,0)且x1<x2

∵x1,x2∈(﹣∞,0)且x1<x2

根据函数单调性的定义知:函数g(x)在(﹣∞,0)上为减函数


(2)解:由(1)知函数g(x)在(﹣∞,0)上为减函数,

∴函数g(x)在(﹣∞,﹣1]上为减函数,

∴当x=﹣1时,


【解析】(1)设x1 , x2∈(﹣∞,0)且x1<x2 , 通过作差比较g(x1),g(x2)的大小关系,根据减函数定义只需说明g(x1)>g(x2)即可;(2)根据第(1)问结论说明g(x)在(﹣∞,﹣1]上的单调性,根据单调性即可求得其最小值.
【考点精析】关于本题考查的函数单调性的判断方法和函数单调性的性质,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形且, , 分别为的中点, , ,

(Ⅰ)证明:直线∥平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣mx+2=0},且A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f(1)=1.
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在(﹣1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1+a( x+( x
(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;
(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是自然对数的底数, .

(1)设,求的极值;

(2)设,求证:函数没有零点;

(3)若,设,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axa+1,(a>0且a≠1)恒过定点(2,2).
(1)求实数a;
(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;
(3)对于定义在(1,4]上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若是函数是极值点,1是函数零点,求实数的值和函数的单调区间;

(Ⅱ) 若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案