精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
1
2
时,直线l1上是否存在点M,使AM⊥BM?若存在,求出M的坐标,若不存在,说明理由.
分析:(Ⅰ)由椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
⇒2a2=3b2,x-y+2=0与圆x2+y2=b2相切⇒b2=2,从而可求椭圆C1的方程;
(Ⅱ)由(Ⅰ)知F1(-1,0),F2(1,0)⇒l1:x=-1,设M(x,y),由|MP|=|MF2|⇒|x-(-1)|=
(x-1)2+y2
化简即得点M的轨迹C2的方程为y2=4x.
(Ⅲ)设A(
y
2
1
4
y1),B(
y
2
2
4
y2)
,假设直线l1:x=-1上存在点M(-1,m),使得AM⊥BM,直线l的方程x-2y-1=0与y2=4x联立,得y2-8y-4=0,利用韦达定理与则
AM
BM
=0
即可求得点M的坐标.
解答:解:(Ⅰ)∵e=
3
3

e2=
c2
a2
=
a2-b2
a2
=
1
3

∴2a2=3b2
∵直线l:x-y+2=0与圆x2+y2=b2相切,
2
2
=b
b=
2
b2=2

∴a2=3.
∴椭圆C1的方程是
x2
3
+
y2
2
=1

(Ⅱ)由(Ⅰ)知F1(-1,0),F2(1,0),所以l1:x=-1,设M(x,y),
∵|MP|=|MF2|,
|x-(-1)|=
(x-1)2+y2
化简得:y2=4x,
∴点M的轨迹C2的方程为y2=4x.
(Ⅲ)∵直线l的方程为x-2y-1=0,代入y2=4x,得y2-8y-4=0.
由韦达定理得y1+y2=8,y1y2=-4,设A(
y
2
1
4
y1),B(
y
2
2
4
y2)

设直线l1:x=-1上存在点M(-1,m),使得AM⊥BM,则
AM
BM
=0

(-1-
y
2
1
4
,m-y1)•(-1-
y
2
2
4
,m-y2)=0

∴16m2-16m(y1+y2)+4(y12+y22)+y12y22+16y1y2+16=0,
∴m2-8m+16=0,解得m=4,
∴准线上存在点M(-1,4),使AM⊥BM.
点评:本题考查直线与圆锥曲线的综合问题,着重考查待定系数法与定义法求圆锥曲线的方程,难点在于(Ⅲ)直线与圆锥曲线的综合应用,方程组的联立,韦达定理的使用,向量的坐标运算,复杂的化简与计算,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(1)求椭圆C1的方程;
(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.
①当直线BD过点(0,
1
7
)时,求直线AC的方程;
②当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线方程是x=
25
4
,其左、右顶点分别是A、B;双曲线C2
x2
a2
-
y2
b2
=1
的一条渐近线方程为3x-5y=0.
(1)求椭圆C1的方程及双曲线C2的离心率;
(2)在第一象限内取双曲线C2上一点P,连接AP交椭圆C1于点M,连接PB并延长交椭圆C1于点N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,直线l:y=x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2:x2-
y2
4
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则b2=
0.5
0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案