精英家教网 > 高中数学 > 题目详情
6.已知抛物线C的顶点在原点,焦点为F(-3,0),C上一点P到焦点F的距离为9,则点P的一个坐标为(  )
A.(-3,6)B.(-3,6$\sqrt{2}$)C.(-6,6)D.(-6,6$\sqrt{2}$)

分析 利用抛物线的简单性质,列出方程求出P的横坐标,即可推出结果.

解答 解:抛物线C的顶点在原点,焦点为F(-3,0),准线方程为:x=3,C上一点P到焦点F的距离为9,
设P(x,y)可得-x+3=9,解得x=-6,则$\sqrt{(-6+3)^{2}+{y}^{2}}$=9,可得y=$±6\sqrt{2}$.
故选:D.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁UB)为(  )
A.{1,4,6}B.{2,4,6}C.{2,4}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:平面内垂直于同一直线的两条直线不平行,命题q:平面内垂直于同一直线的两条直线平行.请你写出以上命题的“p或q”“p且q”“非p”形式的命题,并判断其真假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a=2,则(1+ax)5的展开式中x3项的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆Cn:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=n(a>b>1,n∈N*),F1,F2是椭圆C4的焦点,A(2,$\sqrt{2}$)是椭圆C4上一点,且$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0;
(1)求Cn的离心率并求出C1的方程;
(2)P为椭圆C2上任意一点,直线PF1交椭圆C4于点E,F,直线PF2交椭圆C4于点M,N,设直线PF1的斜率为k1,直线PF2的斜率为k2
(i)求证:k1k2=-$\frac{1}{2}$    
(ii)求|MN|?|EF|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=n2-n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)若cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:$\frac{{x}^{2}}{3-a}-\frac{{y}^{2}}{a-5}=1$可表示焦点在x轴上的双曲线;命题q:若实数a,b满足a>b,则a2>b2.则下列命题中:①p∨q②p∧q③(¬p)∨q④(¬p)∧(¬q)真命题的序号为(  )
A.B.③④C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设Sn为等差数列{an}的前n项和,若a1=1,S7-S5=24,则S6=36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化分数指数幂:($\root{3}{a}$)2•$\sqrt{a{b}^{3}}$=${a}^{\frac{7}{6}}•{b}^{\frac{3}{2}}$.

查看答案和解析>>

同步练习册答案