精英家教网 > 高中数学 > 题目详情
6.函数y=loga(x+1)(a>0且a≠1)的图象恒过点为(  )
A.(1,0)B.(0,1)C.(-1,0)D.(0,0)

分析 由对数的性质令x+1=1解得x值,再计算对数可得.

解答 解:∵a>0且a≠1,∴由对数的性质可得loga1=0,
故当x+1=1即x=0时,y=0,
∴函数的图象恒过定点(0,0),
故选:D.

点评 本题考查对数函数恒过定点,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知α是第二象限的角,tanα=-$\frac{1}{2}$,则cosα=-$\frac{2\sqrt{5}}{5}$,tan2α=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知三点P(5,2),F1(-6,0),F2(4,0),以F1,F2为焦点且过点P的椭圆的标准方程是$\frac{(x+1)^{2}}{45}$+$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题,其中正确的是(2)(3).
(1)函数f(x)=$\frac{1-{e}^{x}}{1+{e}^{x}}$是偶函数
(2)长方体的长宽高分别为a,b,c,对角线长为l,则l2=a2+b2+c2
(3)在x∈[0,1]时,函数f(x)=loga(2-ax)是减函数,则实数a的取值范围是(1,2)
(4)函数$f(x)=\frac{1}{x}$在定义域内即是奇函数又是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直角坐标系的原点是极点,x轴正半轴为极轴,自极点O作直线与曲线pcosθ=4相交于点Q,在OQ上有一动点P满足|OP|•|OQ|=12,若点P的轨迹为曲线C2,方程$\left\{\begin{array}{l}{x=1+t}\\{y=\sqrt{2}t}\end{array}\right.$(t为参数)表示的曲线为C1
(1)求C1的极坐标方程;
(2)若曲线C1与C2交于点A、B,求A、B两点的距离|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定点F1(-1,0),F2(1,0),动点P满足|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=6,动点P轨迹为曲线C.
(1)求曲线C的方程;
(2)若曲线C与x轴的交点为A1,A2,点M是曲线C上异于点A1,A2的点,直线A1M与A2M的斜率分别为k1,k2,求k1k2的值;
(3)过点Q(2,0)作直线l与曲线C交于A,B两点.在曲线C上是否存在点N,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$?若存在,请求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有甲、乙两个加工厂都想加工这批产品.已知甲、乙两个工厂每天分别能加工这种产品16件和24件,且知单独加工这批产品甲比乙要多用20天,又知若由甲单独做,公司需付甲厂每天费用180元,若由乙厂单独做,公司需付乙厂每天费用220元.
(1)求这批产品共有多少件?
(2)在加工过程中,公司需另派一名工程师到厂进行技术指导,并由公司为其提供每天10元的午餐补助费,公司制定产品加工方案如下:可由一个工厂单独加工完成;也可以由两个厂合作完成,请你帮助公司从所有可供选择的方案中,选择一种最省钱的加工方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题P:对任意实数x∈R都有(a2-1)x2+(a+1)x+1>0恒成立,命题q:关于x的方程x2-ax+1=0有两个不相等的实根.若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等比数列{an}中,a7=8a4,则公比q是(  )
A.8B.6C.4D.2

查看答案和解析>>

同步练习册答案