精英家教网 > 高中数学 > 题目详情

【题目】如图,已知点在圆柱的底面圆上,为圆的直径.

(1)若圆柱的体积,求异面直线所成的角(用反三角函数值表示结果);

(2)若圆柱的轴截面是边长为2的正方形,四面体的外接球为球,求两点在球上的球面距离.

【答案】(1)异面直线所成的角为;(2)

【解析】

(1)由题设条件,以O为原点,分别以OBOO1yz轴的正向,并以AB的垂直平分线为x轴,建立空间直角坐标系,求出的坐标,用公式求出线线角的余弦即得.

(2)由题意找到球心并求得R与∠AGB,即可求出A,B两点在球G上的球面距离.

(1)以O为原点,分别以OBOO1yz轴的正向,并以AB的垂直平分线为x轴,

建立空间直角坐标系.

由题意圆柱的体积=4,解得AA1=3.

易得各点的坐标分别为:A(0,﹣2,0),A1(0,﹣2,3),B(0,2,0).

的夹角为θ,异面直线A1BAP所成的角为α,

,得

即异面直线A1BAP所成角的大小为arccos

(2)由题意得AA1=2,OB=1,四面体的外接球球心在A1B的中点,所以R=,此时=,所以两点在球上的球面距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.

(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?

对快递满意

对快递不满意

合计

对商品满意

对商品不满意

合计

(2)为进一步提高购物者的满意度,平台按分层抽样方法从中抽取次交易进行问卷调查,详细了解满意与否的具体原因,并在这次交易中再随机抽取次进行电话回访,听取购物者意见.求电话回访的次交易至少有一次对商品和快递都满意的概率.

附: (其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点

1)求椭圆的方程;

2)设点,点轴上,过点的直线交椭圆交于两点.

①若直线的斜率为,且,求点的坐标;

②设直线的斜率分别为,是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现拟建一个粮仓,如图1所示,粮仓的轴截而如图2所示,EDECADBCBCABEFABCDEF于点GEFFC10m

1)设∠CFBθ,求粮仓的体积关于θ的函数关系式;

2)当sinθ为何值时,粮仓的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知变量之间的线性回归方程为,且变量之间的一-组相关数据如下表所示,则下列说法错误的是( )

A.可以预测,当时,B.

C.变量之间呈负相关关系D.该回归直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足对任意的恒成立,为其前项的和,且

(1)求数列的通项

(2)数列满足,其中

①证明:数列为等比数列;

②求集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥如图①所示,图②是它的正(主)视图.已知圆的直径为 是圆周上异于的一点, 的中点.

(I)求该圆锥的侧面积S;

(II)求证:平面⊥平面

(III)若∠CAB=60°,在三棱锥中,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为,点在椭圆C上,直线与椭圆C交于EF两点,直线AEAF分别与y轴交于点MN

求椭圆C的方程;

x轴上是否存在点P,使得无论非零实数k怎样变化,总有为直角?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)当为偶函数时,求函数的极值;

(Ⅱ)若函数在区间上有两个零点,求的取值范围.

查看答案和解析>>

同步练习册答案