精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是正方形平面.

1)求证:

2)求异面直线所成角的大小;

3)求二面角的大小.

【答案】1)证明见解析;(245°;(3120°

【解析】

1)建立空间直角坐标系,计算0即可证明垂直关系;

2)利用向量求出,即可得到异面直线所成角;

3)求出两个半平面的法向量,根据法向量所成角的大小求二面角的大小.

1)由题:底面是正方形平面

所以两两互相垂直,且

D为原点,分别为轴正方向建立空间直角坐标系,设=1

所以

,所以,即

2

所以夹角为135°,即异面直线所成角45°

3)设平面的法向量

,取,则

设平面的法向量

,取,则

所以

即法向量所成角为60°

所以二面角的大小为120°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知二次函数均为实常数,)的最小值是0,函数的零点是,函数满足,其中,为常数.

1)已知实数满足、,且,试比较的大小关系,并说明理由;

2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长均相等的四棱锥, 为底面正方形的中心, ,分别为侧棱,的中点,有下列结论正确的有:( )

A.∥平面B.平面∥平面

C.直线与直线所成角的大小为D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若关于的不等式上恒成立,求的取值范围;

(Ⅱ)设函数,在(Ⅰ)的条件下,试判断上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱5kg.某采购商打算采购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:

等级

珍品

特级

优级

一级

箱数

40

30

10

20

售价(元/kg

36

30

24

18

1)试计算样本中的100箱不同等级橙子的平均价格;

2)按照分层抽样的方法,从这100个样本中抽取10箱,试计算各等级抽到的箱数;

3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起再从中抽取2箱,求抽取的2箱中两种等级均有的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5kg,某采购商打算订购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:

等级

珍品

特级

优级

一级

箱数

40

30

10

20

1)若将频率改为概率,从这100箱橙子中有放回地随机抽取4箱,求恰好抽到2箱是一级品的概率:

2)利用样本估计总体,庄园老板提出两种购销方案供采购商参考:

方案一:不分等级卖出,价格为27/kg;

方案二:分等级卖出,分等级的橙子价格如下:

等级

珍品

特级

优级

一级

售价(元/kg

36

30

24

18

从采购商的角度考虑,应该采用哪种方案?

3)用分层抽样的方法从这100箱橙子中抽取10箱,再从抽取的10箱中随机抽取3箱,X表示抽取的是珍品等级,求x的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据=1,2,…,6),如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

q

84

83

80

75

68

已知

(Ⅰ)求出的值;

(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(参考公式:线性回归方程中的最小二乘估计分别为,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中e是自然对数的底数,kR)

(1)讨论函数的单调性;

(2)当函数有两个零点时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移1个单位,得到函数的图像.

1)当时,求的值域

2)令,若对任意都有恒成立,求的最大值

查看答案和解析>>

同步练习册答案