精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.

1)求直线和曲线的极坐标方程;

2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长

【答案】1,;(2 .

【解析】

1)先把直线和曲线的参数方程化成普通方程,再化成极坐标方程;

2)联立极坐标方程,根据极径的几何意义可得,再由面积可解得极角,从而可得

1)直线的参数方程是为参数),

消去参数得直角坐标方程为:

转换为极坐标方程为:,即

曲线的参数方程是为参数),

转换为直角坐标方程为:

化为一般式得

化为极坐标方程为:

2)由于,得

所以

所以

由于,所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程,

1)求直线和圆的直角坐标方程;

3)设圆与直线交于点,若点的坐标为,求,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:

直径/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备的性能等级.

2)将直径小于等于或直径大于的零件认为是次品.

i)从设备的生产流水线上任意抽取2个零件,计算其中次品个数的数学期望

ii)从样本中任意抽取2个零件,计算其中次品个数的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均为2,侧面 底面,侧棱与底面所成的角为

(Ⅰ)求直线与底面所成的角;

(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(其中)是曲线上的两点,两点在轴上的射影分别为点.

1)当点的坐标为时,求直线的方程;

2)记的面积为,梯形的面积为,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数经过6次运算后得到1,则的值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,设椭圆的左焦点为,短轴的两个端点分别为,且,点上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆和圆分别相切于,两点,当面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5分)《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )

A. 1B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中不正确的个数是(

①若直线上有无数个点不在平面内,则

②和两条异面直线都相交的两条直线异面;

③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;

④一条直线和两条异面直线都相交,则它们可以确定两个平面.

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案