精英家教网 > 高中数学 > 题目详情
(2013•静安区一模)已知a,b,c分别为△ABC三个内角A、B、C所对的边长,a,b,c成等比数列.
(1)求B的取值范围;
(2)若x=B,关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求实数m的取值范围.
分析:(1)利用等比数列的性质,结合余弦定理及基本不等式,即可求B的取值范围;
(2)关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,等价于关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)>-m恒成立,求出左边的最小值,即可求得m的取值范围.
解答:解:(1)∵a、b、c成等比数列,∴b2=ac(1分)
∴cosB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
(3分)
∵a2+c2≥2ac,∴cosB=
a2+c2-ac
2ac
ac
2ac
=
1
2
,等号当且仅当a=c时取得,
1
2
≤cosB<1,∴0<B≤
π
3
.(7分)
(2)关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,等价于关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)>-m恒成立,
cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)=cos2x-4sin(
π
4
+
x
2
)cos(
π
4
+
x
2

=2cosx2-2cosx-1=2(cosx-
1
2
2-
3
2
(11分)
∵x=B,∴
1
2
≤cosx<1
∴2(cosx-
1
2
2-
3
2
≥-
3
2

由题意有:-m<-
3
2
,即m>
3
2
(14分)
(说明:这样分离变量m>2cosx-cos2x=-2cos2x+2cosx+1参照评分)
点评:本题考查等比数列的性质,考查余弦定理、基本不等式,考查恒成立问题,考查学生分析解决问题的能力,正确求最值是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•静安区一模)已知O是△ABC外接圆的圆心,A、B、C为△ABC的内角,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m•
AO
,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)设P是函数y=x+
2
x
(x>0)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A、B,则
PA
PB
的值是
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知函数f(x)=
1
2
sin(2ax+
7
)的最小正周期为4π,则正实数a=
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)等比数列{an}(n∈N*)中,若a2=
1
16
a5=
1
2
,则a12=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)两条直线l1:3x-4y+9=0和l2:5x+12y-3=0的夹角大小为
arccos
33
65
arccos
33
65

查看答案和解析>>

同步练习册答案