精英家教网 > 高中数学 > 题目详情

已知函数,其中为正实数,2.7182……

(1)当时,求在点处的切线方程。

(2)是否存在非零实数,使恒成立。

 

【答案】

(1)            (2)当时,不等式恒成立。

【解析】本试题主要是考查了导数在研究函数中的运用。几何意义和证明不等式恒成立。

(1)把a=-1代入f(x),求出f(x)的导函数,把切点的横坐标x=1代入导函数中,得到的导函数值即为切线方程的斜率,根据求出的斜率和切点坐标写出切线的方程即可

(2)要使恒成立,只须的极小值点

, 所以

此时讨论单调性得到证明

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx-x2(x>0).
(1)求函数f(x)的单调区间与最值;
(2)若方程2xlnx+mx-x3=0在区间[
1e
,e]
内有两个不相等的实根,求实数m的取值范围;  (其中e为自然对数的底数)
(3)如果函数g(x)=f(x)-ax的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,求证:g'(px1+qx2)<0(其中,g'(x)是g(x)的导函数,正常数p,q满足p+q=1,q>p)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx+cos2x+m,其中m为实常数.求f(x)的最小正周期、单调递增区间、所有的对称轴方程、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+1,g(x)=
x+
1
4x
,x>0
-x2-6x-8,x≤0
,关于方程g[f(x)]-a=0(a为正实数)的根的叙述有下列四个命题
①存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:黄冈中学 高一数学(下册)、第四章 三角函数单元(4.8~4.11)测试卷 题型:044

已知函数,其中a为实常数.

(1)若x∈R,求f(x)的最小正周期和单调递增区间;

(2)若时,f(x)的最大值为4,求a的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省厦门市双十中学高三(上)期中数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=sinxcosx+cos2x+m,其中m为实常数.求f(x)的最小正周期、单调递增区间、所有的对称轴方程、值域.

查看答案和解析>>

同步练习册答案