精英家教网 > 高中数学 > 题目详情

【题目】为了解某校学生的视力情况,现采用随机抽样的方法从该校的两班中各抽取名学生进行视力检测,检测的数据如下:

名学生的视力检测结果:

名学生的视力检测结果:

(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生的视力较好?并计算班的名学生视力的方差;

(Ⅱ)现从班的上述名学生中随机选取名,求这名学生中至少有名学生的视力低于的概率.

【答案】(Ⅰ)详见解析; (Ⅱ) .

【解析】试题分析: (Ⅰ)分别计算出两个班的平均数进行比较,再利用方差公式计算班学生的数据;(Ⅱ)根据古典概型计算公式计算即可.

试题解析:(Ⅰ) 名学生的视力检测结果的平均数为

名学生视力检测结果的平均数为

从数据结果看班学生的视力较好

名学生视力的方差

(Ⅱ)从班的名学生中随机选取名,则这名学生视力检测结果有

个基本事件.其中这名学生中至少有名学生视力低于的基本事件有个,所以所求的概率为

点睛:本题考查统计中平均数与方差的计算以及利用古典概型求概率,属于中档题目. 具有以下两个特点的概率模型称为古典概率模型,简称古典概型:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1若曲线在点处的切线方程为,求的值

2)当时,恒成立,求满足条件的最小整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年11月,第十一届中国(珠海)国际航空航天博览会开幕式当天,歼-20的首次亮相给观众留下了极深的印象.某参赛国展示了最新研制的两种型号的无人机,先从参观人员中随机抽取100人对这两种型号的无人机进行评价,评价分为三个等级:优秀、良好、合格.由统计信息可知,甲型号无人机被评为优秀的频率为、良好的频率为;乙型号无人机被评为优秀的频率为,且被评为良好的频率是合格的频率的5倍.

(1) 求这100人中对乙型号无人机评为优秀和良好的人数;

(2) 如果从这100人中按对甲型号无人机的评价等级用分层抽样的方法抽取5人,然后从其他对乙型号无人机评优秀、良好的人员中各选取1人进行座谈会,会后从这7人中随机抽取2人进行现场操作体验活动,求进行现场操作体验活动的2人都评优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1,a1 , a2 , 9是等差数列,数列1,b1 , b2 , b3 , 9是等比数列,则 的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程是,则经过圆上一点的切线方程( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是平行四边形所在平面外一点, 平面 , .

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足,若目标函数的最大值为6,则的最小值为( )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某校高三一次月考5个班级的数学、物理的平均成绩:

班级

1

2

3

4

5

数学(分)

111

113

119

125

127

物理(分)

92

93

96

99

100

(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量 的线性回归方程

(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为,求的分布列和数学期望.

附:

查看答案和解析>>

同步练习册答案