精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的标准方程;

(2)已知点,和平面内一点),过点任作直线与椭圆相交于两点,设直线的斜率分别为,试求满足的关系式.

【答案】(1);(2).

【解析】

试题分析:(1)圆心到直线的距离等于,即,所以,由解得,所以椭圆的标准方程为;(2)当直线的斜率不存在时,直线方程为,与椭圆方程联立可以求出坐标,此时,则,则的关系为,当直线的斜率存在时,设的方程为,与椭圆方程联立,消去,设,于是(*),又,所以,整理、代入(*)式得到,所以,整理得.

试题解析:(1)

(2)当直线斜率不存在时,由解得,不妨设

因为,所以,所以的关系式为

当直线的斜率存在时,设点,设直线,联立椭圆整理得:

.

所以,所以的关系式为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x1)f(x)=-2x1f(2)15.

(1)求函数f(x)的解析式;

(2) g(x)(22m)xf(x)

若函数g(x)x[02]上是单调函数求实数m的取值范围;

求函数g(x)x[02]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)loga(ax2x1)(a0a1)

(1) a求函数f(x)的值域.

(2) f(x)在区间上为增函数时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12已知是定义在 上的奇函数,且,当,时,有成立

判断 上的单调性,并加以证明;

对所有的恒成立,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数;

(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图5所示:将的图像向右平移个单位,可得到函数的图象,且图像关于原点对称,

(1)求的值;

(2)求的最小值,并写出的表达式;

(3)若关于的函数在区间上最小值为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称)是定量描述空气质量状况的指数,空气质量按照大小分为六级,为优;为轻度污染;为中度污染;为重度污染;为严重污染.一环保人士记录去年某地某月10天的的茎叶图如右.

(1)利用该样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算)

(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为,求的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列正确命题有__________

①“”是“”的充分不必要条件

②如果命题“”为假命题,则中至多有一个为真命题

③设,若,则的最小值为

④函数上存在,使,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

同步练习册答案