精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是(  )
A.2≤m≤3B.m≤3C.2<m≤3D.m≤2

分析 根据B⊆A可分B=∅,和B≠∅两种情况:B=∅时,m+1>2m-1;B≠∅时,$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1≥-2}\\{2m-1≤5}\end{array}\right.$,这样便可得出实数m的取值范围.

解答 解:①若B=∅,则m+1>2m-1;
∴m<2;
②若B≠∅,则m应满足:$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1≥-2}\\{2m-1≤5}\end{array}\right.$,解得2≤m≤3;
综上得m≤3;
故选:B.

点评 考查子集的概念,描述法表示集合,注意不要漏了B=∅的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设f(x)=$\left\{\begin{array}{l}{a+{x}^{2},x≥0}\\{xcos\frac{1}{x},x<0}\end{array}\right.$,试确定常数a的值.使f(x)在(-∞,+∞)内连续.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求经过两圆x2+y2+6x-7=0和x2+y2+6y=0的交点,并且圆心在直线2x-y-4=0上的圆的方程x2+y2-$\frac{2}{3}$x+$\frac{20}{3}$y+$\frac{7}{9}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则x-2y的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U={1,2,3,4,5,6,7,8},(∁UA)∩B={1,3,4},(∁UA)∩(∁UB)={5,7},A∩B={2},则集合A={2,6,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果命题P(n)对于n=k(k∈N*)时成立,那么它对n=k+2也成立.若P(n)对于n=2时成立,则下列结论正确的是(  )
A.P(n)对所有正整数n成立B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n成立D.P(n)对所有大于1的正整数n成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x0∈N,x02+2x0≥3”的否定为(  )
A.?x0∈N,x02+2x0≤3B.?x∈N,x2+2x≤3C.?x0∈N,x02+2x0<3D.?x∈N,x2+2x<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在正方体ABCD-A1B1C1D1中.
(1)求直线A1B和平面ABCD所成的角;
(2)求直线A1B和平面A1B1CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱锥P-ABC的三条侧棱两两垂直,即:PA⊥PB、PB⊥PC、PC⊥PA,且PO⊥平面ABC并交平面ABC于点O,请问点O是△ABC的什么心(内心、外心、垂心、重心、中心等)?并证明你的结论.

查看答案和解析>>

同步练习册答案