精英家教网 > 高中数学 > 题目详情
86、若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1)时,f(x)=|x|.则函数y=f(x)的图象与函数y=log4|x|的图象的交点的个数为
6
分析:f(x)是个周期为2的周期函数,且是个偶函数,在一个周期[-1,1)上,图象是2条斜率分别为1和-1的线段,且 0≤f(x)≤1,同理得到在其他周期上的图象;y=log4|x|也是个偶函数,图象过(1,0),和(4,1),结合图象可得函数y=f(x)的图象与函数y=log4|x|的图象的交点个数.
解答:解:由题意知,函数y=f(x)是个周期为2的周期函数,且是个偶函数,在一个周期[-1,1)上,
图象是2条斜率分别为1和-1的线段,且 0≤f(x)≤1,同理得到在其他周期上的图象.
函数y=log4|x|也是个偶函数,先看他们在[0,+∞)上的交点个数,
则它们总的交点个数是在[0,+∞)上的交点个数
的2倍,在(0,+∞)上,y=log4|x|=log4x,图象过(1,0),和(4,1),是单调增函数,与f(x)交与3个不同点,
∴函数y=f(x)的图象与函数y=log4|x|的图象的交点个数是6个.
故答案为 6.
点评:本题考查函数的周期性、奇偶性、函数图象的对称性,体现数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域是[0,2],则函数y=f(x+1)+f(x-1)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x-1)的定义域为(1,2],则函数y=f(
1x
)的定义域为
{x|x≥1}
{x|x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f′(x)>f(x),则f(2012)与e2012f(0)的大小关系为
f(2012)>e2012f(0)
f(2012)>e2012f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f'(x)的图象关于直线x=-
1
2
对称,且f′(1)=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)若对于任意实数x,
1
6
f′(x)+m>0
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2a-1)x-alnx,g(x)=-
4x
-alnx
(a∈R).
(1)a<0时,求f(x)的极小值;
(2)若函数y=f(x)与y=g(x)的图象在x∈[1,3]上有两个不同的交点M,N,求a的取值范围.

查看答案和解析>>

同步练习册答案