精英家教网 > 高中数学 > 题目详情
是椭圆上一动点,是椭圆的两个焦点,则的最大值为                  .
4

试题分析:在中,设,由余弦定理可知,结合椭圆的性质化简得:;当点位于椭圆的上顶点时,有最大值,且,此时的最大值为4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量共线?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,焦距为的椭圆的两个顶点分别为,且与n共线.

(1)求椭圆的标准方程;
(2)若直线与椭圆有两个不同的交
,且原点总在以为直径的圆的内部,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(ab>0)上任一点P到两个焦点的距离的和为2P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1y1),B(x2y2).
(1)若 (O为坐标原点),求|y1y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QAQB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1上任一点P,由点Px轴作垂线PQ,垂足为Q,设点MPQ上,且=2,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于AB两点,设N是过点且平行于x轴的直线上一动点,且满足 (O为原点),且四边形OANB为矩形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P是椭圆=1上的任意一点,F1、F2是它的两个焦点,O为坐标原点,有一动点Q满足,则动点Q的轨迹方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线过椭圆的左焦点和一个顶点,则椭圆的方程为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是椭圆上的一动点,为椭圆的两个焦点,是坐标原点,若的角平分线上的一点,且,则的取值范围为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是 (  )
A.2    B.6  C.4  D.12

查看答案和解析>>

同步练习册答案