精英家教网 > 高中数学 > 题目详情

【题目】函数y=sin2x的图象经过适当变换可以得到y=cos2x的图象,则这种变换可以是(
A.沿x轴向右平移 个单位
B.沿x轴向左平移 个单位
C.沿x轴向左平移 个单位
D.沿x轴向右平移 个单位

【答案】B
【解析】解:由于y=cos2x=sin(2x+ )=sin2(x+ ), 故把函数y=sin2x的图象沿x轴向左平移 个单位,可得y=cos2x的图象,
故选:B.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+ax+1(a∈R). (Ⅰ)当a= 时,求不等式f(x)<3的解集;
(Ⅱ)当0<x<2时,不等式f(x)>0恒成立,求实数a的取值范围;
(Ⅲ)求关于x的不等式f(x)﹣ a2﹣1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为(
A.20
B.15
C.10
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+1)x+b.
(1)若f(x)<0的解集为(﹣1,3),求a,b的值;
(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;
(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,C> ,若函数y=f(x)在[0,1]上为单调递减函数,则下列命题正确的是(
A.f(cosA)>f(cosB)
B.f(sinA)>f(sinB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=
(Ⅰ)求证:AB⊥PC;
(Ⅱ)求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以下关于向量的命题中,不正确的是(
A.若向量 ,向量 (xy≠0),则
B.若四边形ABCD为菱形,则
C.点G是△ABC的重心,则
D.△ABC中, 的夹角等于A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中, 平面PCD,平面PAD平面ABCD,CD⊥AD,△APD为等腰直角三角形,
(1)证明:平面PAB⊥平面PCD;
(2)若三棱锥B﹣PAD的体积为 ,求平面PAD与平面PBC所成二面角的余弦值.

查看答案和解析>>

同步练习册答案