【题目】已知函数f(x)=lnx+x2 .
(Ⅰ)求函数h(x)=f(x)﹣3x的极值;
(Ⅱ)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围.
【答案】解:(Ⅰ)由已知,得h(x)=f(x)﹣3x=lnx+x2﹣3x, (x>0),
令 =0,得x= 或x=1,
∴当x∈(0, )∪(1,+∞)时,h′(x)>0,当x∈( )时,h′(x)<0,
∴h(x)在(0, ),(1,+∞)上为增函数,在( )上为减函数.
∴h(x)极小值=h(1)=﹣2, ;
(Ⅱ)g(x)=f(x)﹣ax=lnx+x2﹣ax,g′(x)= ,
由题意,知g′(x)≥0(x>0)恒成立,
即a≤ .
∵x>0时,2x+ ,当且仅当x= 时等号成立.
故 ,
∴a .
【解析】(Ⅰ)由已知得到h(x),求其导函数,解得导函数的零点,由导函数的零点对定义域分段,求得函数的单调区间,进一步求得极值;(Ⅱ)由函数g(x)=f(x)﹣ax在定义域内为增函数,可得g′(x)≥0(x>0)恒成立,分离参数a,利用基本不等式求得最值得答案.
科目:高中数学 来源: 题型:
【题目】在某校组织的一次篮球定点投篮训练中,规定每人最多投3次,在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率为0.25,在B处的命中率为0.8,该同学选择先在A处投一球,以后都在B处投,用X表示该同学投篮训练结束后所得的总分.
(1)求该同学投篮3次的概率;
(2)求随机变量X的数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要建造一个容积为1 600立方米,深为4米的长方体无盖蓄水池,池壁的造价为每平方米200元,池底的造价为每平方米100元.
(1)把总造价y元表示为池底的一边长x米的函数;
(2)由于场地原因,蓄水池的一边长不能超过20米,问蓄水池的这个底边长为多少时总造价最低?总造价最低是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,∈[1,+∞).
(1)当时,判断函数的单调性并证明;
(2)当时,求函数的最小值;
(3)若对任意∈[1,+∞),>0恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN= ,则MN与平面BB1C1C的位置关系为( )
A.相交
B.平行
C.垂直
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求y=f(x)的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com