精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系 中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线 的极坐标方程是 ,圆 的极坐标方程是
(1)求 交点的极坐标;
(2)设 的圆心, 交点连线的中点,已知直线 的参数方程是 为参数),求 的值.

【答案】
(1)解: 代入 ,得 .所以 ,取 .再由 ,或 .所以 交点的极坐标是 ,或

(2)解:参数方程化为普通方程得 .由(Ⅰ)得 的直角坐标分别是 ,代入解得
【解析】(1)把极坐标坐标代入到直线的极坐标方程中整理得到 cos θ = 0 或 tan θ = 1,进而得出 θ的大小代入到圆C的极坐标方程求出 ρ 的值,进而求出交点的极坐标。(2)由题意利用极坐标和直角坐标的互化关系得到直线的一般方程由(1)的结论求出点P、Q 的坐标代入直线的方程求出结果即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某纺织厂订购一批棉花,其各种长度的纤维所占的比例如下表所示:

(1)请估计这批棉花纤维的平均长度与方差.

(2)如果规定这批棉花纤维的平均长度为4.90厘米,方差不超过1.200,两者允许误差均不超过0.10视为合格产品.请你估计这批棉花的质量是否合格?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)
(1)当a=1时,求函数f(x)的最值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数 (a>0),若存在 ,使得 成立,则实数 的取值范围是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)求 极值;
(2)当 时, ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, ,设是线段中点.

(1)求证: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论 为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,汉诺塔问题是指有3根杆子ABCB杆上有若干碟子,把所有碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B杆上的4个碟子全部移到A杆上,最少需要移动( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数f(x)中,满足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x

查看答案和解析>>

同步练习册答案