精英家教网 > 高中数学 > 题目详情

【题目】设复数z满足zi=2﹣i,i为虚数单位,
p1:|z|=
p2:复数z在复平面内对应的点在第四象限;
p3:z的共轭复数为﹣1+2i,
p4:z的虚部为2i.
其中的真命题为(
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4

【答案】A
【解析】解:复数z满足zi=2﹣i,i为虚数单位,
可得z= = =﹣1﹣2i.
p1:|z|= = ,正确.
p2:复数z在复平面内对应的点(﹣2,﹣2)在第三象限;所以原命题不正确.
p3:z的共轭复数为﹣1+2i,正确.
p4:z的虚部为2i.不正确.
故选:A.
【考点精析】关于本题考查的命题的真假判断与应用和复数的定义,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系;形如的数叫做复数,分别叫它的实部和虚部才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为矩形,且的中点.

(1)过点作一条射线,使得,求证:平面 平面

(2)求二面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有150名学生参加了中学生环保知识竞赛,为了解成绩情况,现从中随机抽取50名学生的成绩进行统计(所有学生成绩均不低于60分).请你根据尚未完成的频率分布表,解答下列问题:

(1)写出M 、N 、p、q(直接写出结果即可),并作出频率分布直方图;

(2)若成绩在90分以上学生获得一等奖,试估计全校所有参赛学生获一等奖的人数;

(3)现从所有一等奖的学生中随机选择2名学生接受采访,已知一等奖获得者中只有2名女生,求恰有1名女生接受采访的概率.

分组

频数

频率

第1组

[60,70)

M

0.26

第2组

[70,80)

15

p

第3组

[80,90)

20

0.40

第4组

[90,100]

N

q

合计

50

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 命题实数x满足(其中),命题实数满足

)若,且为真,求实数的取值范围;

)若 的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下几个结论: ①相关指数R2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:,一定过样本点的中心:③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式,中的|ad-bc|的值越大,说明两个分类变量有关系的可能性越强.其中正确结论的个数有(  )个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD的底面是直角梯形,ADBCADC=90,AD=2BCPA⊥平面ABCD

(1)E为线段PA的中点,求证:BE∥平面PCD

(2)PA=AD=DC,求平面PAB与平面PCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an , 则 + + +…+ =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z满足zi=2﹣i,i为虚数单位,
p1:|z|=
p2:复数z在复平面内对应的点在第四象限;
p3:z的共轭复数为﹣1+2i,
p4:z的虚部为2i.
其中的真命题为(
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在矩形ABCD中,已知AB=3AD,E,FAB的两个三等分点,AC,DF交于点G.

(1)证明:EGDF;

(2)设点E关于直线AC的对称点为,问点是否在直线DF上,并说明理由.

查看答案和解析>>

同步练习册答案