精英家教网 > 高中数学 > 题目详情
1.函数f(x)=x2-2ax+2,x∈[-1,1].
(1)讨论f(x)在[-1,1]上的奇偶性;
(2)f(x)在[-1,1]上的最小值记为g(a),试写出g(a)的函数表达式.

分析 (1)根据函数奇偶性的定义进行判断即可.
(2)先将函数配方,确定函数的对称轴,再利用对称轴与区间的位置关系,进行分类讨论,从而可求函数f(x)=x2-2ax+2在区间[-1,1]上的最小值.

解答 解:(1)若a=0,则f(x)=x2+2,
则f(-x)=f(x),即函数f(x)为偶函数,
若a≠0,则f(1)=3-2a,f(-1)=3+2a,
则f(-1)≠-f(1)且f(-1)≠f(1),此时f(x)为非奇非偶函数.
(2)f(x)=x2-2ax+2=(x-a)2+2-a2
①当a<-1时,函数在区间[-1,1]上单调增,
∴函数f(x)的最小值为g(a)=f(-1)=3+2a;
②当-1≤a≤1时,函数在区间[-1,a]上单调减,在区间[a,1]上单调增,
∴f(x)的最小值为g(a)=f(a)=2-a2
③当a>1时,函数在区间[-1,1]上单调减,
∴f(x)的最小值为g(a)=f(1)=3-2a.
综上可知,f(x)的最小值为g(a)=$\left\{\begin{array}{l}{3+2a,}&{a<-1}\\{2-{a}^{2},}&{-1≤a≤1}\\{3-2a,}&{a>1}\end{array}\right.$.

点评 本题重点考查二次函数在指定区间上的最值问题,解题的关键是正确配方,确定函数的对称轴,利用对称轴与区间的位置关系,进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(n)满足f(n+1)=$\left\{\begin{array}{l}{2f(n),0≤f(n)<\frac{1}{2}}\\{2f(n)-1,\frac{1}{2}≤f(n)<1}\end{array}\right.$ 其中n∈N*.若f(1)=$\frac{6}{7}$,求 f(20)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列函数:①f(x)=$\sqrt{-2{x}^{3}}$与g(x)=x$\sqrt{-2x}$;②f(x)=x0与g(x)=$\frac{1}{{x}^{0}}$;③f(x)=x2-2x-1与f(t)=t2-2t-1.其中表示同一函数的有②③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A={x|x≤-1或1<x<2},B={x|$\frac{x-a}{x-b}$≤0},已知A∩B={-3<x≤-1},A∪B={x|x<2},则a+b的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若一次函数f(x)满足f(2)=1,f(3)=5,则f(x)的解析式为f(x)=4x-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}是各项均为正数的等比数列,a2=4,a1a4=32,数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求数列{an}与{bn}的通项公式;
(2)若集合M={n|$\frac{{b}_{n}{b}_{n+1}}{{a}_{n}}$≥λ,n∈N*}中元素的个数为4,试求实数λ的取值范围;
(3)将数列{an}与{bn}按a1,b1,a2,b2,a3,b3,…,an,bn,…的顺序排好后,再删去其中小于2015的项,剩下的项按原来的顺序构成一个新数列{cn},试求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知单调递增数列{an}的前n项和为Sn,满足Sn=$\frac{1}{2}$(a${\;}_{n}^{2}$+n).
(1)求数列{an}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{\frac{1}{{a}_{n+1}^{2}-1}}&{n为奇数}\\{3×{2}^{{a}_{n-1}}+1}&{n为偶数}\end{array}\right.$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=2,则1+sin2α=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(log2x)2-2log${\;}_{\frac{1}{2}}$x+1,g(x)=x2-ax+1.
(1)求函数y=f(($\frac{1}{2}$)${\;}^{{x}^{2}-3x}$-4)的定义域;
(2)若存在a∈R,对任意x1∈[$\frac{1}{8}$,2],总存在唯一x0∈[-1,2],使得f(x1)=g(x0)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案