精英家教网 > 高中数学 > 题目详情
9.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{3x-y-5≥0}\end{array}\right.$,则z=$\frac{y+1}{2x}$的最大值为$\frac{5}{6}$.

分析 画出满足条件的平面区域,求出角点的坐标,结合目标函数的几何意义求出z的最大值即可.

解答 解:画出满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{3x-y-5≥0}\end{array}\right.$的平面区域,如图示:
由$\left\{\begin{array}{l}{x-y+1=0}\\{3x-y-5=0}\end{array}\right.$,解得:A(3,4),
z=$\frac{y+1}{2x}$的几何意义是可行域内的点与(0,-1)连线的斜率的一半,由题意可知可行域的A与(0,-1)连线的斜率最大.
∴z=$\frac{y+1}{2x}$的最大值是:$\frac{5}{6}$,
故答案为:$\frac{5}{6}$.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=(x2-ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为x-y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x>0}\\{1-|2x+1|,x≤0}\end{array}\right.$,若关于x的方程f(x)=kx-1有两个不相等的实数根,则实数k的取值范围为{k|k≥2或k=1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cosωx(ω>0),其图象上相邻的两条对称轴之间的距离为$\frac{π}{2}$,
(Ⅰ)求f(x+$\frac{π}{6}$)在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的单调区间;
(Ⅱ)若α∈($\frac{5π}{12}$,$\frac{π}{2}$),f(α+$\frac{π}{3}$)=$\frac{1}{3}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2+bx+c满足f(1-x)=f(1+x),f(0)>0,且f(m)=f(n)=0(m≠n,m>0,n>0),则${log_3}m-{log_{\frac{1}{3}}}n$的值(  )
A.小于0B.等于0C.大于0D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果实数x、y满足关系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$则(x-1)2+y2的最小值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)为R上的增函数,求证:a+b<0的充要条件是f(a)+f(b)<f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{-4{x}^{2},x<0}\\{{x}^{2}-x,x≥0}\end{array}\right.$,若f(a)=-$\frac{1}{4}$,则a=$\frac{1}{4}$或$\frac{1}{2}$,若方程f(x)-b=0有三个不同的实根,则实数b的取值范围是(-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P∩Q=(  )
A.[-1,3]B.[1,3]C.[1,2]D.(-∞,3]

查看答案和解析>>

同步练习册答案