精英家教网 > 高中数学 > 题目详情
如图,甲船以每小时30
2
海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距10
2
海里,则乙船每小时航行
 
海里.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:先求出B1B2的距离,再由时间求出乙船航行的速度.
解答: 解:在△A1A2B2中,A1A2=A2B2=10
2
,∠A1A2B2=60°,∴A1B2=10
2

在△B1A1B2中,A1B1=20,A1B2=10
2
,∠B1A1B2=45°,
则由余弦定理得:B1B2=
400+200-2×20×10
2
×
2
2
=10
2
,v=30
2

∴乙船每小时航行30
2
海里.
故答案为:
点评:本题考查解三角形的实际应用,考查余弦定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,x≤0
x+5,0<x≤1
-2x+8,x>1

(1)求f(
3
2
),f(
1
π
),f(-1)的值.
(2)求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

F为抛物线y2=2x的焦点,A,B,C为该抛物线上三点,若
FA
+
FB
+
FC
=
0
,则|
FA
|+|
FB
|+|
FC
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,BC是单位圆A的一条直径,F是线段AB上的点,且
BF
=
FA
,若DE是圆A中绕圆心A运动的一条直径,则
FD
FE
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-2,0]时,函数y=3x的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,求圆的标准方程:
(1)圆心为D(8,-3),且过点E(5,1);
(2)过A(5,1),B(7,-3),C(2,-8).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinxcosx是(  )
A、最小正周期为2π且在[0,π]内有且只有三个零点的函数
B、最小正周期为2π且在[0,π]内有且只有二个零点的函数
C、最小正周期为π且在[0,π]内有且只有三个零点的函数
D、最小正周期为π且在[0,π]内有且只有二个零点的函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2≥0},集合B={x|x-1>0},求A∩B、A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式:
(Ⅰ)lg5•lg20+(lg2)2
(Ⅱ)0.027- 
1
3
-(-
1
6
-2+2560.75-
1
3
+(
1
9
0

查看答案和解析>>

同步练习册答案