精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求证:BD⊥平面AED;
(2)求二面角F﹣BD﹣C的余弦值.

【答案】
(1)证明:因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°.所以∠ADC=∠BCD=120°.又CB=CD,

所以∠CDB=30°,因此,∠ADB=90°,AD⊥BD,

又AE⊥BD且,AE∩AD=A,AE,AD平面AED,

所以BD⊥平面AED;


(2)解法一:由(1)知,AD⊥BD,同理AC⊥BC,

又FC⊥平面ABCD,因此CA,CB,CF两两垂直,以C为坐标原点,分别以CA,CB,CF所在的直线为X轴,Y轴,Z轴建立如图的空间直角坐标系,

不妨设CB=1,则C(0,0,0),B(0,1,0),D( ,﹣ ,0),F(0,0,1),因此 =( ,﹣ ,0), =(0,﹣1,1)

设平面BDF的一个法向量为 =(x,y,z),则 =0, =0

所以x= y= z,取z=1,则 =( ,1,1),

由于 =(0,0,1)是平面BDC的一个法向量,

则cos< >= = = ,所以二面角F﹣BD﹣C的余弦值为

解法二:取BD的中点G,连接CG,FG,由于 CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD平面ABCD,

所以FC⊥BD,由于FC∩CG=C,FC,CG平面FCG.

所以BD⊥平面FCG.故BD⊥FG,所以∠FGC为二面角F﹣BD﹣C的平面角,

在等腰三角形BCD中,由于∠BCD=120°,

因此CG= CB,又CB=CF,

所以GF= = CG,

故cos∠FGC=

所以二面角F﹣BD﹣C的余弦值为


【解析】(1)由题意及图可得,先由条件证得AD⊥BD及AE⊥BD,再由线面垂直的判定定理即可证得线面垂直;(2)解法一:由(1)知,AD⊥BD,可得出AC⊥BC,结合FC⊥平面ABCD,知CA,CA,CF两两垂直,因此可以C为坐标原点,分别以CA,CB,CF所在的直线为X轴,Y轴,Z轴建立如图的空间直角坐标系,设CB=1,表示出各点的坐标,再求出两个平面的法向量的坐标,由公式求出二面角F﹣BD﹣C的余弦值即可;
解法二:取BD的中点G,连接CG,FG,由于 CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD平面ABCD,可证明出∠FGC为二面角F﹣BD﹣C的平面角,再解三角形求出二面角F﹣BD﹣C的余弦值.
【考点精析】掌握直线与平面垂直的判定和向量语言表述线面的垂直、平行关系是解答本题的根本,需要知道一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可;设直线的方向向量是,平面内的两个相交向量分别为,若

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设10≤x1<x2<x3<x4≤104 , x5=105 , 随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值 的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则(
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图像过点,且在点处的切线方程为.

1)求的解析式;

2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)设,若函数的图象的一条对称轴为直线,求的值;

2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的的值;

3)设,已知函数在区间上的所有零点依次为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,已知AB=AA1=2,点QBC的中点.

(Ⅰ)求证:平面平面

(Ⅱ)求点到平面AQC1的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的奇偶性,并说明理由;

(2)若对任意实数恒成立,求实数的取值范围;

(3)若上有最大值9,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=( )
A.﹣2或2
B.﹣9或3
C.﹣1或1
D.﹣3或1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器(百台),其总成本为(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:

(1)求利润函数的解析式(利润=销售收入-总成本);

(2)工厂生产多少百台产品时,可使利润最多?

查看答案和解析>>

同步练习册答案