精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是直角梯形是两个边长为2的正三角形,

(1)求证:平面⊥平面

(2)求二面角的余弦值

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)证明:易得,又计算可得 ,又平面平面平面(2)解:由(1)知平面建立坐标系求得:平面的法向量为又平面的一个法向量为二面角的余弦值为

试题解析:(1)证明:设的中点连接

是两个边长为的正三角形,

由勾股定理可得

由勾股定理可得

由勾股定理的逆定理可得

平面

平面

平面平面

(2)解:由(1)知平面

分别作的平行线以它们作轴建立如图所示的空间直角坐标系

由已知得:

设平面的法向量为

解得

则平面的一个法向量为又平面的一个法向量为

二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆,其中分别为其左,右焦点,点是椭圆上一点,,且

(1)当,且时,求的值;

(2)若,试求椭圆离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数在区间上单调递增;函数在其定义域上存在极值.

(1)若为真命题,求实数的取值范围;

(2)如果为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,S1=-,an-4SnSn-1=0(n≥2).

(1) 若bn,求证:{bn}是等差数列;

(2) 求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,为正三角形,平面平面.

1)求证:平面平面

2)求三棱锥的体积;

3)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是(  )

A. (0,1) B. (-∞,1)

C. (0,+∞) D. (-∞,0)

查看答案和解析>>

同步练习册答案