【题目】若椭圆的顶点和焦点中,存在不共线的三点恰为菱形的中心和顶点,则的离心率等于( )
A.B.C.或D.或
科目:高中数学 来源: 题型:
【题目】已知,,,是各项均为正数的等差数列,其公差大于零.若线段,,,的长分别为,,,,则( ).
A.对任意的,均存在以,,为三边的三角形
B.对任意的,均不存在以,,为三边的三角形
C.对任意的,均存在以,,为三边的三角形
D.对任意的,均不存在以,,为三边的三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若不等式对恒成立,求的值;
(2)若在内有两个极值点,求负数的取值范围;
(3)已知,,若对任意实数,总存在正实数,使得成立,求正实数的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:
①若,,则
②若,,,则
③若,,则
④若,,则
其中正确命题的序号是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,、为椭圆的左、右焦点,为椭圆上一点,且.
(1)求椭圆的标准方程;
(2)设直线,过点的直线交椭圆于、两点,线段的垂直平分线分别交直线、直线于、两点,当最小时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,楔形几何体由一个三棱柱截去部分后所得,底面侧面,,楔面是边长为2的正三角形,点在侧面的射影是矩形的中心,点在上,且
(1)证明:平面;
(2)求楔面与侧面所成二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com