精英家教网 > 高中数学 > 题目详情

【题目】设椭圆 的左、右焦点,其焦距为,点在椭圆的内部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是__________

【答案】

【解析】

在椭圆的内部, ,即 解得,又恒成立 则椭圆离心率的取值范围是故答案为.

【方法点晴】本题主要考查利用椭圆的简单性质求双曲线的离心率范围,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点在椭圆的内部以及三角形的性质构造出关于的不等式,最后解出的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面积为,求C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中错误的是( )

A. 平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行;

B. 若两个平面平行,则分别位于这两个平面的直线也互相平行;

C. 平行于同一个平面的两个平面平行;

D. 若两个平面平行,则其中一个平面内的直线平行于另一个平面;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数

判断如下两个命题的真假:

命题甲: 在区间上是增函数;

命题乙: 在区间上恰有两个零点,且.

能使命题甲、乙均为真的函数的序号是

A. ① B. ② C. ①③ D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E的焦点为F是抛物线E上一点,且

1求抛物线E的标准方程;

2设点B是抛物线E上异于点A的任意一点,直线AB与直线交于点P,过点Px轴的垂线交抛物线E于点M,设直线BM的方程为kb均为实数,请用k的代数式表示b,并说明直线BM过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记

(1)试用表示的长;

(2)试确定点的位置,使两条栈道长度之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数图象向左平移个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,则下列说法中正确的是( )

A.的最大值为B.是奇函数

C.的图象关于点对称D.上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三角形ABC中,D是线段BC上一点,且F为线段AB上一点.

1)若,求的值;

2)求的取值范围;

3)若为线段的中点,直线相交于点,求

查看答案和解析>>

同步练习册答案