精英家教网 > 高中数学 > 题目详情
设数列{an}满足a1=2,am+an+am-n=
1
2
(a2m+a2n)+m-n,其中m,n∈N,m≥n
,数列{bn}满足:bn=an+1-an
(I)求a0,a2
(II)当n∈N*时,求证:数列{bn}为等差数列;
(III)设cn=
2n-2(bn-2)
n
(n∈N*),令Sn=c1+c2+…+cn
,求证:
n
2
-
1
3
S1
S2
+
S2
S3
+…+
Sn
sn+1
n
2
(n∈N*)
分析:(I)根据数列递推式,利用赋值法,可得结论;
(II)根据数列递推式,令m=n+2,进而可得an+2=2an+1-an+2,由此可证数列{bn}为等差数列;
(III)确定数列的通项,求出数列的和,再进行放缩,即可证得结论.
解答:(I)解:∵am+an+am-n=
1
2
(a2m+a2n)+m-n

∴令m=n,可得a0=0;令n=0,可得a2m=4am-2m
令m=1,可得a2=4a1-2=6;
(II)证明:令m=n+2,则a2n+2+an+a2-2=
1
2
(a2n+4+a2n)

∵a2m=4am-2m
∴a2n+1=4an+1-2(n+1),a2n+4=4an+2-2(n+2),a2n=4an-2n
∴an+2=2an+1-an+2
∴(an+2-an+1)-(an+1-an)=2
∵bn=an+1-an
∴bn+1-bn=2
∴数列{bn}为首项为a2-a1=4,公差为2的等差数列;
(III)证明:由(II)知bn=2n+2
cn=
2n-2(bn-2)
n
=2n-1
Sn=c1+c2+…+cn=2n-1
Sn
Sn+1
=
2n-1
2n+1-1
2n+1-1
2(2n+1-1)
=
1
2

S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
2

又∵
Sn
Sn+1
=
2n-1
2n+1-1
=
1
2
-
1
2n-2
1
2
-
1
3
×
1
2n

S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
2
-
1
3
(
1
2
+
1
22
+…+
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3

n
2
-
1
3
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
2
(n∈N*)
点评:本题考查数列递推式,考查等差数列的证明,考查数列的通项与求和,考查不等式的证明,正确确定数列的通项,利用放缩法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,且对任意的n∈N*,点Pn(n,an)都有
.
PnPn+1
=(1,2)
,则数列{an}的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时.
则{cn}
是公差为8的准等差数列.
(I)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式:
(Ⅱ)设(I)中的数列{an}的前n项和为Sn,试研究:是否存在实数a,使得数列Sn有连续的两项都等于50.若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如数列cn:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时
,则数列{cn}是公差为8的准等差数列.设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.
(Ⅰ)求证:{an}为准等差数列;
(Ⅱ)求证:{an}的通项公式及前20项和S20

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=2,an+1=1-
1
an
,令An=a1a2an,则A2013
=(  )

查看答案和解析>>

同步练习册答案