精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是

【答案】(2+ ,1)
【解析】解:过点D作DG⊥BC于点G,
∵四边形BDCE是菱形,
∴BD=CD.
∵BC=2,∠D=60°,
∴△BCD是等边三角形,
∴BD=BC=CD=2,
∴CG=1,GD=CDsin60°=2× =
∴D(2+ ,1).
故答案为:(2+ ,1).

过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,再由BC=2,∠D=60°可得出△BCD是等边三角形,由锐角三角函数的定义求出GD及CG的长即可得出结论.本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等边三角形是解答此题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ (a>1)
(1)证明:函数f(x)在(﹣1,+∞)上为增函数;
(2)用反证法证明f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B

(1)证明:平面AB1C⊥平面A1BC1
(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且满足.

(1)求角B的大小;

(2)若点MBC中点,且AM=AC=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形,过平面,再过于点,过于点

Ⅰ)求证:

Ⅱ)若平面于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面是边长为的正方形,四边形是矩形,平面平面 分别是的中点.

Ⅰ)求证: 平面

Ⅱ)求证:平面平面

Ⅲ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是(  )
A.平均数为160
B.中位数为158
C.众数为158
D.方差为20.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面底面,且,点分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)写出四棱锥的体积.(只写出结论,不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)讨论是函数的极大值还是极小值;

(2)过点作曲线的切线,求此切线方程.

查看答案和解析>>

同步练习册答案