【题目】已知函数,.
(Ⅰ)讨论的单调性;
(Ⅱ)当时,令,其导函数为,设是函数的两个零点,判断是否为的零点?并说明理由.
【答案】(Ⅰ)当时,在上单调递增;当时,在单调递增,在上单调递减. (Ⅱ)不是,理由见解析
【解析】
(Ⅰ)对函数求导,对分分类讨论,得出导函数的正负,从而得函数的单调性;
(Ⅱ)当时,得. 由,是函数的两个零点,不妨设,可得 ,两式相减可得: , 再.
则. 设,,令,. 研究函数在上是増函数,得,可得证.
(Ⅰ)依题意知函数的定义域为,且 ,
(1)当时, ,所以在上单调递增.
(2)当时,由得:,
则当时;当时.
所以在单调递增,在上单调递减.
综上,当时,在上单调递增;
当 时, 在单调递增,在上单调递减.
(Ⅱ)不是导函数的零点. 证明如下:
当时,.
∵,是函数的两个零点,不妨设,
,两式相减得:
即: , 又.
则.
设,∵,∴,
令,.
又,∴,∴在上是増 函数,
则,即当时,,从而,
又所以,
故,所以不是导函数的零点.
科目:高中数学 来源: 题型:
【题目】按照如下规则构造数表:第一行是:2;第二行是:;即3,5,第三行是:即4,6,6,8;(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)
2
3,5
4,6,6,8
5,7,7,9,7,9,9,11
……………………………………
若第行所有的项的和为.
(1)求;
(2)试求与的递推关系,并据此求出数列的通项公式;
(3)设,求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列.如果数列满足, ,其中,则称为的“衍生数列”.
(Ⅰ)若数列的“衍生数列”是,求;
(Ⅱ)若为偶数,且的“衍生数列”是,证明:的“衍生数列”是;
(Ⅲ)若为奇数,且的“衍生数列”是,的“衍生数列”是,….依次将数列,,,…的第项取出,构成数列 .证明:是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:,,且.
(1)求数列前20项的和;
(2)求通项公式;
(3)设的前项和为,问:是否存在正整数、,使得?若存在,请求出所有符合条件的正整数对,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)设是椭圆上一点,为椭圆长轴上一点,求的最大值与最小值;
(3)设是椭圆外的动点,满足,点是线段与该椭圆的交点,点在线段上,并且满足,,求点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.若、、是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B是海岸线OM、ON上两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为、,测得,,以点O为坐标原点,射线OM为x轴的正半轴,建立如图所示的直角坐标系,一艘游轮以小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q).
(1)问游轮自码头A沿方向开往码头B共需多少分钟?
(2)海中有一处景点P(设点P在平面内,,且),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于、,且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线、、都具有性质H.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com