【题目】已知函数,函数.
(1)若,求曲线在点处的切线方程;
(2)若函数有且只有一个零点,求实数的取值范围;
(3)若函数对恒成立,求实数的取值范围.(是自然对数的底数,)
【答案】(1);(2);(3).
【解析】
(1)代入a值,求函数的导数,由导数的几何意义求得切线斜率,根据点斜式可得切线方程;(2)求导数,通过讨论a的范围,求函数单调区间,结合函数单调性和函数的最值可求a的范围;(3)求g(x)解析式,求函数导数,讨论函数单调性,由函数单调性和最值可确定a的范围.
(1)当时,,则,所以,
所以切线方程为.
(2),
①当时,恒成立,所以单调递增,
因为,所以有唯一零点,即符合题意;
②当时,令,解得,列表如下:
- | 0 | + | |
极小值 |
由表可知,.
(i)当,即时,,所以符合题意;
(ii)当,即时,,
因为,且,所以,
故存在,使得,所以不符题意;
(iii)当,即时,,
因为,
设,
则,
所以单调递增,即,所以,
又因为,所以,
故存在,使得,所以不符题意;
综上,的取值范围为.
(3),则,
①当时,恒成立,所以单调递增,
所以,即符合题意;
②当时,恒成立,所以单调递增,
又因为
,
所以存在,使得,
且当时,,即在上单调递减,
所以,即不符题意;
综上,的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,它的一个顶点A与抛物线的焦点重合.
1求椭圆C的方程;
2是否存在直线l,使得直线l与椭圆C交于M,N两点,且椭圆C的右焦点F恰为的垂心三条高所在直线的交点?若存在,求出直线l的方程:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园要设计如图所示的景观窗格(其结构可以看成矩形在四个角处对称地截去四个全等的三角形所得,如图二中所示多边形),整体设计方案要求:内部井字形的两根水平横轴米,两根竖轴米,记景观窗格的外框(如图二实线部分,轴和边框的粗细忽略不计)总长度为米.
(1)若,且两根横轴之间的距离为米,求景观窗格的外框总长度;
(2)由于预算经费限制,景观窗格的外框总长度不超过米,当景观窗格的面积(多边形的面积)最大时,给出此景观窗格的设计方案中的大小与的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某品牌饮料的某种食品添加剂是否超标,现对该品牌下的两种饮料一种是碳酸饮料含二氧化碳,另一种是果汁饮料不含二氧化碳进行检测,现随机抽取了碳酸饮料、果汁饮料各10瓶均是组成的一个样本,进行了检测,得到了如下茎叶图根据国家食品安全规定当该种添加剂的指标大于毫克为偏高,反之即为正常.
(1)依据上述样本数据,完成下列列联表,并判断能否在犯错误的概率不超过的前提下认为食品添加剂是否偏高与是否含二氧化碳有关系?
正常 | 偏高 | 合计 | |
碳酸饮料 | |||
果汁饮料 | |||
合计 |
(2)现从食品添加剂偏高的样本中随机抽取2瓶饮料去做其它检测,求这两种饮料都被抽到的概率.
参考公式:,其中
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
1求圆C的普通方程和直线l的直角坐标方程;
2设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,,,.
(1)求平面与平面所成锐二面角的余弦值;
(2)点是线段上的动点,当直线与所成的角最小时,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com