精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,椭圆C:数学公式+数学公式=1(a>b>0)的左、右顶点分别为A,B,离心率为数学公式,右准线为l:x=4.M为椭圆上不同于A,B的一点,直线AM与直线l交于点P.
(1)求椭圆C的方程;
(2)若数学公式,判断点B是否在以PM为直径的圆上,并说明理由;
(3)连接PB并延长交椭圆C于点N,若直线MN垂直于x轴,求点M的坐标.

解:(1)由解得所以b2=3.
所以椭圆方程为=1. …(4分)
(2)因为,,所以xM=1,代入椭圆得yM=,即M(1,),
所以直线AM为:y=(x+2),得P(4,3),
所以=(-1,),=(2,3). …(8分)
因为=≠0,所以点B不在以PM为直径的圆上. …(10分)
(3)因为MN垂直于x轴,由椭圆对称性可设M(x1,y1),N(x1,-y1).
直线AM的方程为:y=(x+2),所以yp=
直线BN的方程为:y=(x-2),所以yp=,…(12分)
所以=.因为y1≠0,所以=-.解得x1=1.
所以点M的坐标为(1,±). …(16分)
分析:(1)由题意建立方程组可求a2和b2的值,可写方程;
(2)要判断点B是否在圆上,可转化为判是否为0;
(3)设点,写出直线的方程,分别和椭圆方程联立,可解得yp=,和yp=,由两式相等可解得M坐标.
点评:本题为椭圆与直线的位置关系的考查,涉及向量的知识和圆的知识,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上一点到椭圆E的两个焦点距离之和为2
3
,椭圆E的离心率为
6
3

(1)求椭圆E的方程;
(2)若b为椭圆E的半短轴长,记C(0,b),直线l经过点C且斜率为2,与直线l平行的直线AB过点(1,0)且交椭圆于A、B两点,求△ABC的面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,椭圆的参数方程为
x=
3
cosθ
y=sinθ
为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为2ρcos(θ+
π
3
)=3
6
.求椭圆上点到直线距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为
2
3
,点M的横坐标为
9
2

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1•k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为
1
2
.过F1的直线L交C于A,B两点,且△ABF2的周长为16,那么C的方程为
x2
16
+
y2
12
=1
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=
2
2

(1)求椭圆C的标准方程;
(2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.

查看答案和解析>>

同步练习册答案