精英家教网 > 高中数学 > 题目详情
14.数列{an}的前n项和为Sn,满足2Sn+an=1.设${a_n}=\frac{{{b_n}-n}}{2n+1}$.
(1)求:求数列{an}和{bn}的通项公式;
(2)设{bn}的前n项和为Tn,求$\frac{{{T_n}+18}}{n}+\frac{n+2}{n}{(\frac{1}{3})^n}$的最小值.

分析 (1)根据数列的递推公式即可求出通项公式an=($\frac{1}{3}$)n,继而求出{bn}的通项公式,
(2)由(1)可得bn=(2n+1)($\frac{1}{3}$)n+n,利用分组求和和错位相减法求出Tn,再根据数列的函数特征,判断出当n=6时,$\frac{{{T_n}+18}}{n}+\frac{n+2}{n}{(\frac{1}{3})^n}$取得最小值,代值计算即可.

解答 解:(1)∵2Sn+an=1,
当n=1时,a1=$\frac{1}{3}$,
当n≥2时,2Sn-1+an-1=1,
∴2an+an-an-1=0,
即an=$\frac{1}{3}$an-1
∴数列{an}是以首项为$\frac{1}{3}$,公比为$\frac{1}{3}$的等比数列,
∴an=($\frac{1}{3}$)n
∵${a_n}=\frac{{{b_n}-n}}{2n+1}$.
∴bn=(2n+1)($\frac{1}{3}$)n+n,
∵设{(2n+1)($\frac{1}{3}$)n}的前n项和为Sn
∴Sn=3×($\frac{1}{3}$)1+5×($\frac{1}{3}$)2+7×($\frac{1}{3}$)3+…+(2n+1)($\frac{1}{3}$)n
∴$\frac{1}{3}$Sn=3×($\frac{1}{3}$)2+5×($\frac{1}{3}$)3+7×($\frac{1}{3}$)4+…+(2n-1)($\frac{1}{3}$)n+(2n+1)($\frac{1}{3}$)n+1
∴$\frac{2}{3}$Sn=1+2×($\frac{1}{3}$)2+2×($\frac{1}{3}$)3+2×($\frac{1}{3}$)4+…+2•($\frac{1}{3}$)n-(2n+1)($\frac{1}{3}$)n+1
=1+2($\frac{\frac{1}{9}(1-(\frac{1}{3})^{n-1})}{1-\frac{1}{3}}$)-(2n+1)($\frac{1}{3}$)n=$\frac{4}{3}$-(2n+4)($\frac{1}{3}$)n+1
∴Sn=2-(n+2)($\frac{1}{3}$)n
∴Tn=Sn+$\frac{n(n+1)}{2}$=2-(n+2)($\frac{1}{3}$)n+$\frac{1}{2}$n(n+1)
∴$\frac{{{T_n}+18}}{n}+\frac{n+2}{n}{(\frac{1}{3})^n}$=$\frac{20}{n}$+$\frac{1}{2}$(n+1)=$\frac{20}{n}$+$\frac{n}{2}$+$\frac{1}{2}$
令f(x)=$\frac{20}{x}$+$\frac{x}{2}$,x≥1,
∴f′(x)=-$\frac{20}{{x}^{2}}$+$\frac{1}{2}$=$\frac{{x}^{2}-40}{2{x}^{2}}$,
当f′(x)>0时,x>2$\sqrt{10}$,函数单调递增,
当f′(x)<0时,1≤x<$\sqrt{10}$,函数单调递减,
∴当x=2$\sqrt{10}$时,函数有最小值,
∴当n=7时,$\frac{20}{n}$+$\frac{n}{2}$+$\frac{1}{2}$=$\frac{20}{7}$+$\frac{7}{2}$+$\frac{1}{2}$=$\frac{48}{7}$=$\frac{288}{42}$
当n=6时,$\frac{20}{n}$+$\frac{n}{2}$+$\frac{1}{2}$=$\frac{10}{3}$+3+$\frac{1}{2}$=$\frac{41}{6}$=$\frac{287}{42}$,
∴当n=6时,$\frac{{{T_n}+18}}{n}+\frac{n+2}{n}{(\frac{1}{3})^n}$的最小值为$\frac{41}{6}$.

点评 本题主要考查数列的通项公式的求法、前n项和公式的求法,数列的函数特征,考查抽象概括能力,推理论证能力,运算求解能力,考查化归与转化思想、函数与方程思想,解题时要注意错位相减法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.定义在数集U内的函数y=f(x),若对任意x1,x2∈U都有|f(x1)-f(x2)|<1,则称函数y=f(x)为U上的storm函数.
(Ⅰ)判断下列函数是否为[-1,1]内storm函数,并说明理由:
①y=2x-1+1,②$y=\frac{1}{2}{x^2}+1$;
(Ⅱ)若函数$f(x)=\frac{1}{2}{x^2}-bx+1$在x∈[-1,1]上为storm函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a,b∈R,集合{0,$\frac{b}{a}$,b}={1,a+b,a},则b-a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\frac{x^3}{3}+\frac{1}{2}a{x^2}$+2bx+c(a,b,c∈R),函数f(x)的两个极值点分别在区间(0,1)与(1,2)内,则b-a+1的取值范围是(2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点P是直线y=x+2与椭圆$Γ:\frac{x^2}{a^2}+{y^2}=1(a>1)$的一个公共点,F1,F2分别为该椭圆的左右焦点,设|PF1|+|PF2|取得最小值时椭圆为C.
(1)求椭圆C的方程;
(2)已知A,B是椭圆C上关于y轴对称的两点,Q是椭圆C上异于A,B的任意一点,直线QA,QB分别与y轴交于点M(0,m),N(0,n),试判断mn是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.椭圆$\frac{x^2}{4}+{y^2}=1$上的点到直线$x-y+5\sqrt{5}=0$的距离的最大值是3$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知F1,F2为椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,F1在以$Q(-\sqrt{2},1)$为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.
(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}满足:a1=1,an=an-1+3n,则a4等于(  )
A.4B.13C.28D.43

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a和b异面,b和c异面,则(  )
A.a∥cB.a和c异面
C.a和c异面或平行或相交D.a和c相交

查看答案和解析>>

同步练习册答案