精英家教网 > 高中数学 > 题目详情
下面的一组图形为侧棱SA垂直于底面ABCD的某一四棱锥S-ABCD的侧面与底面,画出四棱锥S-ABCD的空间图形并研究
(I)求直线SC与平面SAD所成的角的大小;
(Ⅱ)求二面角B-SC-D的大小;
(Ⅲ)求此四棱锥S-ABCD外接球半径与内切球半径之和.

【答案】分析:(I)证明∠DSC为直线SC与平面SAD所成的角,利用正切函数,可得结论;
(II)作BE⊥SC,垂足为E,连接DE,则DE⊥SC,可得∠BED为二面角B-SC-D的平面角,利用余弦定理可求;
(III)SC为S-ABCD外接于球的直径,利用等体积法,可求内切球半径,从而可得结论.
解答:解:(I)如图所示,由题意,SA=AB=a,SA⊥AB,SA⊥AD,且AB、AD是面ABCD内的交线,∴SA⊥底面ABCDSA⊥平面ABCD,底面ABCD是矩形,
则CD⊥平面SAD,∴∠DSC为直线SC与平面SAD所成的角,
∵CD=a,SD=a
∴tan∠DSC=
∴直线SC与平面SAD所成的角为arctan
(II)作BE⊥SC,垂足为E,连接DE,则DE⊥SC,
∴∠BED为二面角B-SC-D的平面角
∵BC=a,SB=,∴SC=
=
在△BED中,cos∠BED==-
∴∠BED=120°;
(III)SC为S-ABCD外接于球的直径,SC=a,∴半径为
设内切球半径为r,则
∴r=
∴四棱锥S-ABCD外接球半径与内切球半径之和为+
点评:本题考查线面角,面面角,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、下面的一组图形为某一四棱锥S-ABCD的侧面与底面.

(1)请画出四棱锥S-ABCD的示意图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由;
(2)若SA⊥面ABCD,E为AB中点,求证面SEC⊥面SCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的一组图形为某一四棱锥S-ABCD的侧面与底面.精英家教网
(I)请画出四棱锥S-ABCD的示意图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说理理由;
(II)若E为AB中点,求证:平面SEC⊥平面SCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的一组图形为侧棱SA垂直于底面ABCD的某一四棱锥S-ABCD的侧面与底面,画出四棱锥S-ABCD的空间图形并研究
(I)求直线SC与平面SAD所成的角的大小;
(Ⅱ)求二面角B-SC-D的大小;
(Ⅲ)求此四棱锥S-ABCD外接球半径与内切球半径之和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下面的一组图形为侧棱SA垂直于底面ABCD的某一四棱锥S-ABCD的侧面与底面,画出四棱锥S-ABCD的空间图形并研究
(I)求直线SC与平面SAD所成的角的大小;
(Ⅱ)求二面角B-SC-D的大小;
(Ⅲ)求此四棱锥S-ABCD外接球半径与内切球半径之和.

精英家教网

查看答案和解析>>

同步练习册答案