精英家教网 > 高中数学 > 题目详情
已知二次函数y=f(x)的图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[t,t+2]上的最大值h(t);
(Ⅲ)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
【答案】分析:设二次函数f(x)=ax2+bx+c(a≠0)
(I)由图象知函数的图象过(0,),(8,0),最大值为16,代入可求a,b,c,从而可求函数f(x)的解析式
(Ⅱ)由f(x)=-(x-4)2+16,要求函数f(x)在区间[t,t+2]上的最大值h(t),需要考查对称轴x=4与区间[t,t+4]的位置关系:分t>4,t≤4≤t+2,t+2<4分别求解函数的最大值
(Ⅲ)构造函数φ(x)=g(x)-f(x)=x2-8x+6lnx+m.要使函数f(x)与函数g(x)有且仅有2个不同的交点,则函数φ(x)=x2-8x+6lnx+m的图象与x轴的正半轴有且只有两个不同的交点,结合导数的知识可得必须且只须,从而可求m的范围
解答:解:设二次函数f(x)=ax2+bx+c(a≠0)
(I)由图象知:
∴函数f(x)的解析式为f(x)=-x2+8x…(4分)
(Ⅱ)∵f(x)=-(x-4)2+16,
∴当t>4时,f(x)的最大值是f(t)=-(t-4)2+16;
当t≤4≤t+2,即2≤t≤4时,f(t)的最大值是f(4)=16;
当t+2<4,即t<2时,f(x)的最大值是f(t+2)=-(t-2)2+16.∴…(8分)
(Ⅲ)令φ(x)=g(x)-f(x),则g(x)-f(x)=x2-8x+6lnx+m.
因为x>0,要使函数f(x)与函数g(x)有且仅有2个不同的交点,则函数φ(x)=x2-8x+6lnx+m的图象与x轴的正半轴有且只有两个不同的交点

当x∈(0,1)时,φ′(x)>0,φ(x)是增函数;
当x∈(1,3)时,φ′(x)<0,φ(x)是减函数
当x∈(3,+∞)时,φ′(x)>0,φ(x)是增函数
当x=1或x=3时,φ′(x)=0
∴φ(x)极大值为φ(1)=m-7;φ(x)极小值为φ(3)=m+6ln3-15…(12分)
又因为当x→0时,φ(x)→-∞
当x→+∞时,φ(x)→+∞
所以要使φ(x)=0有且仅有两个不同的正根,只须

∴m=7或m=15-6ln3.
∴当m=7或m=15-6ln3.时,函数f(x)与g(x)的图象有且只有两个不同交点.…(14分)
点评:本题目考查了由二次函数的图象求解函数的解析式,考查了识别图象的能力及二次函数性质的应用,函数与方程的相互转化的思想在解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)(x∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函数y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)图象的顶点是(-1,3),又f(0)=4,一次函数y=g(x)的图象过(-2,0)和(0,2).
(1)求函数y=f(x)和函数y=g(x)的解析式;
(2)求关于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象关于直线x=2对称,且在x轴上截得的线段长为2.若f(x)的最小值为-1,求:
(1)函数f(x)的解析式;
(2)函数f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象如图所示:
(1)求函数y=f(x)的解析式;
(2)根据图象写出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有两个不相等的实数根,根据函数图象及变换知识,求k的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数y=f(x-
12
)
是偶函数.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函数g(x)在[t,2]上的最大值和最小值;
(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案