精英家教网 > 高中数学 > 题目详情

【题目】设不等式表示的平面区别为.区域内的动点到直线和直线的距离之积为2.记点的轨迹为曲线.过点的直线与曲线交于两点.

1)求曲线的方程;

2)若垂直于轴,为曲线上一点,求的取值范围;

3)若以线段为直径的圆与轴相切,求直线的斜率.

【答案】1;(2;(3

【解析】

1)根据“区域内的动点到直线和直线的距离之积为”列方程,化简后求得曲线的方程.

2)求得两点的坐标,利用平面向量数量积的坐标运算化简,由此求得的取值范围.

3)设出直线的方程,联立直线的方程和曲线,写出韦达定理.求得以为直径的圆的圆心和直径,根据圆与轴相切列方程,解方程求得直线的斜率.

1)设,依题意①,因为满足不等式,所以①可化为.

2)将代入曲线的方程,解得.,设,因为为曲线上一点,故..的取值范围是.

3)设直线的方程是.联立,消去,所以.

设线段的中点为,则,所以..因为以线段为直径的圆与轴相切,所以,即,化简得.所以直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)已知直线l过点,它的一个方向向量为

①求直线l的方程;

②一组直线都与直线l平行,它们到直线l的距离依次为d),且直线恰好经过原点,试用n表示d的关系式,并求出直线的方程(用ni表示);

2)在坐标平面上,是否存在一个含有无穷多条直线的直线簇,使它同时满足以下三个条件:①点;②,其中是直线的斜率,分别为直线x轴和y轴上的截距;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)下列说法正确的是(

A.椭圆1上任意一点(非左右顶点)与左右顶点连线的斜率乘积为

B.过双曲线1焦点的弦中最短弦长为

C.抛物线y22px上两点Ax1y1).Bx2y2),则弦AB经过抛物线焦点的充要条件为x1x2

D.若直线与圆锥曲线有一个公共点,则该直线和圆锥曲线相切

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在 两家餐厅用餐的满意度,从在 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以10为组距分成6组: ,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:

定义学生对餐厅评价的“满意度指数”如下:

分数

满意度指数

(Ⅰ)在抽样的100人中,求对餐厅评价“满意度指数”为0的人数;

(Ⅱ)从该校在 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对餐厅评价的“满意度指数”比对餐厅评价的“满意度指数”高的概率;

(Ⅲ)如果从 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果你留心使会发现,汽车前灯后的反射镜呈抛物线的形状,把抛物线沿它的对称轴旋转一周,就会形成一个抛物面.这种抛物面形状,正是我们熟悉的汽车前灯的反射镜形状,这种形状使车灯既能够发出明亮的、照射很远的平行光束,又能发出较暗的,照射近距离的光线.我们都知道常规的前照灯主要是由灯泡、反射镜和透镜三部分组成,明亮的光束,是由位于抛物面形状反射镜焦点的光源射出的,灯泡位于抛物面的焦点上,灯泡发出的光经抛物面反射镜反射形成平行光束,再经过配光镜的散射、偏转作用,以达到照亮路面的效果,这样的灯光我们通常称为远光灯:而较暗的光线,不是由反射镜焦点的光源射出的,光线的行进与抛物线的对称轴不平行,光线只能向上和向下照射,所以照射距离并不远,如果把向上射出的光线遮住.车灯就只能发出向下的、射的很近的光线了.请用数学的语言归纳表达远光灯的照明原理,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线Ca0b0)的离心率为,且

1)求双曲线C的方程;

2)已知直线与双曲线C交于不同的两点AB且线段AB的中点在圆上,求m的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围分组,得到的频率分布直方图如图:

(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);

(2)若对得分在前的学生进行校内奖励,估计获奖分数线;

(3)若这60名学生中男女生比例为,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面列联表,是否有的把握认为“成绩良好”与“性别”有关?

成绩良好

成绩一般

合计

男生

女生

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中记载了有关特殊几何体的定义:阳马指底面为矩形,一侧棱垂直于底面的四棱锥,堑堵指底面是直角三角形,且侧棱垂直于底面的三棱柱.

1)某堑堵的三视图,如图1,网格中的每个小正方形的边长为1,求该堑堵的体积;

2)在堑堵中,如图2,若,当阳马的体积最大时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线1(a0b0)的左、右焦点分别为F1F2,点O为双曲线的中心,点P在双曲线右支上,PF1F2内切圆的圆心为Q,圆Qx轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )

A. |OA||OB|B. |OA||OB|

C. |OA||OB|D. |OA||OB|大小关系不确定

查看答案和解析>>

同步练习册答案