精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足:a1=$\frac{3}{2}$,且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$(n≥2,n∈N*).证明:{1-$\frac{n}{{a}_{n}}$}为一个等比数列,求数列{an}的通项公式.

分析 先将递推公式两边取倒数,再两边乘以n,再两边减去1,得到1-$\frac{n}{{a}_{n}}$=$\frac{1}{3}$•[1-$\frac{n-1}{{a}_{n-1}}$],即可下结论.

解答 证明:∵an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$,两边取倒数得,
∴$\frac{1}{{a}_{n}}$=$\frac{2{a}_{n-1}+n-1}{3n{a}_{n-1}}$,两边乘以n,并裂项得,
$\frac{n}{{a}_{n}}$=$\frac{2}{3}$+$\frac{1}{3}$•$\frac{n-1}{{a}_{n-1}}$,两边减1得,
$\frac{n}{{a}_{n}}$-1=-$\frac{1}{3}$+$\frac{1}{3}$•$\frac{n-1}{{a}_{n-1}}$=$\frac{1}{3}$($\frac{n-1}{{a}_{n-1}}$-1),
因此,1-$\frac{n}{{a}_{n}}$=$\frac{1}{3}$•[1-$\frac{n-1}{{a}_{n-1}}$],
故数列{1-$\frac{n}{{a}_{n}}$}是以1-$\frac{1}{{a}_{1}}$为首项,以$\frac{1}{3}$为公比的等比数列,
所以,1-$\frac{n}{{a}_{n}}$=(1-$\frac{1}{{a}_{1}}$)•$(\frac{1}{3})^{n-1}$,其中a1=$\frac{3}{2}$,
解得,an=$\frac{n•3^n}{3^n-1}$.

点评 本题主要考查了等比关系的确定和数列通项公式的解法,证明中用到了综合法与等比数列定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,P为椭圆C上任意一点.
(1)当PF1⊥PF2时,PF1=$\sqrt{2}$,且PF2所在的弦|PQ|=$\frac{4\sqrt{2}}{3}$,求椭圆C的方程.
(2)若EF为圆N:x2+(y-2)2=1的任意一条直径,请求$\overrightarrow{PE}$•$\overrightarrow{PF}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式5x+8<x+m(m是常数)的解集是(-∞,3),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线y=-x+m与圆x2+y2=1有2个交点,则m的取值范围为-$\sqrt{2}$<m<$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求侧棱BA1与平面ABC所成的角;
(2)已知点D满足$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,在直线AA1上的点P,满足DP∥平面AB1C,求二面角B-CP-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>b>c,a+b+c=0,求证:$\frac{c}{a-c}$>$\frac{c}{b-c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.三棱锥P-ABC中,平面PAC⊥平面ABC,PA=PB=PC=3.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)设AB=BC=2$\sqrt{3}$,求直线AC与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在30°的二面角的一个平面内有一点,他到另一个平面内的距离是8,这点到棱的距离等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,圆锥的底面圆心为O,直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,且AB=2PO=2$\sqrt{2}$.
(1)求证PO⊥AC;
(2)求二面角P-AC-E的平面角的余弦值.

查看答案和解析>>

同步练习册答案