精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4

(1)求f(x)的最小正周期;
(2)若f(x)<m在x∈[-
π
4
π
4
]
上恒成立,求实数m的取值范围.
考点:三角函数的最值,两角和与差的正弦函数
专题:三角函数的图像与性质
分析:(1)由条件利用三角函数的恒等变换求得f(x)的解析式,再根据正弦函数的周期性求得f(x)的最小正周期.
(2)由条件利用正弦函数的定义域和值域求得f(x)的最大值,可得实数m的取值范围.
解答: 解:(1)∵函数f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
=cosx(
1
2
sinx+
3
2
cosx )-
3
1+cos2x
2
+
3
4

=
1
4
sin2x-
3
4
cos2x=
1
2
sin(2x-
π
3
),
∴函数的最小正周期为 T=
2

(2)∵x∈[-
π
4
π
4
]
,∴2x-
π
3
∈[-
5
6
π,
1
6
π]
,∴f(x)max=
1
4

∵f(x)<m在x∈[-
π
4
π
4
]
上恒成立,∴m>
1
4
点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦函数的定义域和值域,函数的恒成立问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,抛物线C的顶点为坐标原点O,焦点F在y轴上,准线l与圆x2+y2=1相切.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若点A、B在抛物线C上,且
FB
=2
OA
,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)图象的相邻两对称轴间的距离为
π
2
,若将函数f(x)的图象向左平移
π
6
个单位后图象关于y轴对称.
(Ⅰ)求使f(x)≥
1
2
成立的x的取值范围;
(Ⅱ)设g(x)=-g′(
π
3
)sin(
1
2
ωx)+
3
cos(
1
2
ωx)
,其中g'(x)是g(x)的导函数,若g(x)=
2
7
,且
π
2
<x<
3
,求cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆C:x2+y2-4ax-2by-5=0(a>0,b>0)上任意一点,若P点关于直线x+2y-1=0的对称点仍在圆C上,则
1
a
+
1
b
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①?x∈(0,+∞),(
1
2
x<(
1
3
x
②?x∈(0,1),log
1
2
x>log
1
3
x;
③?x∈(0,+∞),(
1
2
xlog
1
2
x;
④?x∈(0,
1
3
),(
1
2
xlog
1
3
x

其中真命题是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

将三名成人和三名儿童排成一排,则任何两名儿童都不相邻的不同排法总数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数f(x)中,满足“对任意x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0”的是(  )
A、f(x)=lnx
B、f(x)=(x-1)2
C、f(x)=
1
x+1
D、f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2x-1
+
1
2

(Ⅰ)判断函数f(x)的奇偶性,并证明;
(Ⅱ)若对于任意x∈[2,4],不等式f(
x+1
x-1
)<f(
m
(x-1)2(7-x)
)
恒成立,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|x2-x>0},则∁UM=(  )
A、{x|0<x<1}
B、{x|0≤x≤1}
C、{x|x<0或x>1}
D、{x|x≤0或x≥1}

查看答案和解析>>

同步练习册答案