【题目】如图,设椭圆(a>1).
(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
【答案】(Ⅰ);(Ⅱ).
【解析】
试题(Ⅰ)先联立和,可得,,再利用弦长公式可得直线被椭圆截得的线段长;(Ⅱ)先假设圆与椭圆的公共点有个,再利用对称性及已知条件可得任意以点为圆心的圆与椭圆至多有个公共点时,的取值范围,进而可得椭圆离心率的取值范围.
试题解析:(Ⅰ)设直线被椭圆截得的线段为,由得,
故,.
因此.
(Ⅱ)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足
.
记直线,的斜率分别为,,且,,.
由(Ⅰ)知,,,
故,
所以.
由于,,得,
因此, ①
因为①式关于,的方程有解的充要条件是,
所以.
因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,
由得,所求离心率的取值范围为.
科目:高中数学 来源: 题型:
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数(万人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
该景点为了预测2021年的旅游人数,建立了与的两个回归模型:
模型①:由最小二乘法公式求得与的线性回归方程;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
(1)根据表中数据,求模型②的回归方程.(精确到个位,精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同域区间”.给出下列四个函数:
①;②f(x)=x2-1;③f(x)=|2x-1|;④f(x)=log2(x-1).
存在“同域区间”的“同域函数”的序号是__________.(请写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数图象上不同两点,处切线的斜率分别是,规定(为线段的长度)叫做曲线在点与之间的“平方弯曲度”,给出以下命题:
①函数图象上两点与的横坐标分别为1和2,则;
②存在这样的函数,图象上任意两点之间的“平方弯曲度”为常数;
③设点,是抛物线上不同的两点,则;
④设曲线(是自然对数的底数)上不同两点,,且,则的最大值为.
其中真命题的序号为__________(将所有真命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将宽和长都分别为x,的两个矩形部分重叠放在一起后形成的正十字形面积为注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形,
求y关于x的函数解析式;
当x,y取何值时,该正十字形的外接圆面积最小,并求出其最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足:Sn=+-1,且an>0,n∈N*.
(1)求a1,a2,a3,并猜想{an}的通项公式;
(2)证明(1)中的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax-x2-3ln x,其中a∈R,为常数.
(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,. 台体体积公式: , 其中分别为台体上、下底面面积, 为台体高.
(1)证明:直线 平面;
(2)若,, ,三棱锥的体积,求 该组合体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com