精英家教网 > 高中数学 > 题目详情

【题目】如图,设椭圆a1.

)求直线y=kx+1被椭圆截得的线段长(用ak表示);

)若任意以点A0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.

【答案】;(

【解析】

试题()先联立,可得,再利用弦长公式可得直线被椭圆截得的线段长;()先假设圆与椭圆的公共点有个,再利用对称性及已知条件可得任意以点为圆心的圆与椭圆至多有个公共点时,的取值范围,进而可得椭圆离心率的取值范围.

试题解析:()设直线被椭圆截得的线段为,由

因此

)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,满足

记直线的斜率分别为,且

由()知,

所以

由于

因此

因为式关于的方程有解的充要条件是

所以

因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为

得,所求离心率的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在区间A=[mn],使得{y|yf(x),xA}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同域区间”.给出下列四个函数:

;②f(x)=x2-1;③f(x)=|2x-1|;④f(x)=log2(x-1).

存在“同域区间”的“同域函数”的序号是__________.(请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数图象上不同两点处切线的斜率分别是规定为线段的长度)叫做曲线在点之间的平方弯曲度,给出以下命题:

①函数图象上两点的横坐标分别为12,则

②存在这样的函数,图象上任意两点之间的平方弯曲度为常数;

③设点是抛物线上不同的两点,则

④设曲线是自然对数的底数)上不同两点,且,则的最大值为.

其中真命题的序号为__________(将所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将宽和长都分别为x的两个矩形部分重叠放在一起后形成的正十字形面积为注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形

y关于x的函数解析式;

xy取何值时,该正十字形的外接圆面积最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足:Sn1,且an>0nN*.

1)求a1a2a3,并猜想{an}的通项公式;

2)证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且).

(1)当时,若对任意恒成立,求实数的取值范围;

(2)若,设 的导函数,判断的零点个数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中, 台体体积公式: 其中分别为台体上、下底面面积, 为台体高.

1)证明:直线 平面

2)若, ,三棱锥的体积,求 该组合体的体积.

查看答案和解析>>

同步练习册答案