精英家教网 > 高中数学 > 题目详情
8.在△ABC中,角A、B、C的对边分别为a、b、c,已知acosC+$\sqrt{3}$asinC=b+2c
(1)求角A;
(2)若向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影为$\frac{33}{14}$,且sinC=$\frac{3\sqrt{3}}{14}$,求b的值..

分析 (1)由正弦定理及两角和的正弦公式可得sinAcosC+$\sqrt{3}$sinAsinC=sinB+2sinC=sin(A+C)+2sinC=sinAcosC+sinCcosA+2sinC,整理可求A.
(2)由题意可求cosC,sinB,cosB,tanB,由tanB=$\frac{AD}{\frac{33}{14}}$,解得AD,由sinC=$\frac{AD}{b}$,可解得b的值.

解答 解:(1)∵acosC+$\sqrt{3}$asinC=b+2c,
∴sinAcosC+$\sqrt{3}$sinAsinC=sinB+2sinC,
∴sinAcosC+$\sqrt{3}$sinAsinC=sinB+2sinC=sin(A+C)+2sinC=sinAcosC+sinCcosA+2sinC,
∵sinC≠0,
∴$\sqrt{3}$sinA-cosA=2,
∴sin(A-30°)=1,
∴A-30°=90°,
∴A=120°.
(2)如图,AD⊥BC,∵A=120°,sinC=$\frac{3\sqrt{3}}{14}$,可得:cosC=$\frac{13}{14}$,
∴sinB=sin(A+C)=$\frac{\sqrt{3}}{2}×\frac{13}{14}$-$\frac{1}{2}×\frac{3\sqrt{3}}{14}$=$\frac{5\sqrt{3}}{14}$,cosB=$\frac{11}{14}$,tanB=$\frac{5\sqrt{3}}{11}$,
∴tanB=$\frac{5\sqrt{3}}{11}$=$\frac{AD}{\frac{33}{14}}$,解得:AD=$\frac{15\sqrt{3}}{14}$,
∴由sinC=$\frac{3\sqrt{3}}{14}$=$\frac{AD}{b}$,可得:b=$\frac{14×\frac{15\sqrt{3}}{14}}{3\sqrt{3}}$=5.

点评 本题综合考查了三角公式中的正弦定理及两角和的正弦公式、同角三角函数基本关系式的应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),定义函数f(x)=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}$.
(1)求|2$\overrightarrow{a}$-3$\overrightarrow{b}$|的最大值;
(2)当0≤x≤$\frac{2π}{3}$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知定义域为R的函数f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$是奇函数.
(1)求a、b的值;
(2)若对任意的x∈[0,$\frac{π}{2}$],不等式f(cos22x)+f(3sin2x-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.画出下列函数的图象:(1)y=-x2+2|x|+3;  (2)y=|-x2+2x+3|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若两平行直线2x+y-4=0与y=-2x-m-2间的距离不大于$\sqrt{5}$,则m的取值范围是(  )
A.[-11,-1]B.[-11,0]C.[-11,-6]∪(-6,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x2≤1},集合B={-2,-1,0,1,2},则A∩B={-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示在五棱锥P-ABCDE中,侧棱PA⊥底面ABCDE,∠EAB=∠ABC=∠DEA=90°,AB=AE=2,BC=DE=1.求证:BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=t-a}\end{array}\right.$(t为参数).
(Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设点P(0,-a),若直线l与曲线C交于A,B两点,且|PA||PB|=2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}的前n项和为Sn,若a1=20,S10=S15,则当n=12或13时,Sn取最大值.

查看答案和解析>>

同步练习册答案