【题目】设数列的前项和为,对于任意的,都有.
(1)求数列的首项及数列的递推关系式;
(2)若数列成等比数列,求常数的值,并求数列的通项公式;
(3)数列中是否存在三项、、,它们组成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知点,(为正整数)都在函数的图象上.
(1)若数列是等差数列,证明:数列是等比数列;
(2)设,过点的直线与两坐标轴所围成的三角形面积为,试求最小的实数,使对一切正整数恒成立;
(3)对(2)中的数列,对每个正整数,在与之间插入个3,得到一个新的数列,设是数列的前项和,试探究2016是否是数列中的某一项,写出你探究得到的结论并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某商场2018年洗衣机、电视机和电冰箱三种电器各季度销量的百分比堆积图(例如:第3季度内,洗衣机销量约占,电视机销量约占,电冰箱销量约占).根据该图,以下结论中一定正确的是( )
A. 电视机销量最大的是第4季度
B. 电冰箱销量最小的是第4季度
C. 电视机的全年销量最大
D. 电冰箱的全年销量最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直线与抛物线()交于、两点,为坐标原点,.
(1)求直线的方程和抛物线的方程;
(2)若抛物线上一动点从到运动时(不与、重合),求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照如下规则构造数表:第一行是:2;第二行是:;即3,5,第三行是:即4,6,6,8;(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)
2
3,5
4,6,6,8
5,7,7,9,7,9,9,11
……………………………………
若第行所有的项的和为.
(1)求;
(2)试求与的递推关系,并据此求出数列的通项公式;
(3)设,求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形为矩形,,,为线段上的动点.
(1)若为线段的中点,求证:平面;
(2)若三棱锥的体积记为,四棱锥的体积记为,当时,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com