精英家教网 > 高中数学 > 题目详情

【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.

【答案】
(1)解:∵6Sn=(an+1)(an+2),

∴6Sn+1=(an+1+1)(an+1+2),

∴(an+an1)(an﹣an1﹣3)=0,

∵an>0,

∴an﹣an1=3,

∴{an}为等差数列

∵6S1=(a1+1)(a1+2),

∵a1>1,

∴a1=2,

∴an=3n﹣1


(2)解:bn= = = ),

∴{bn}的前n项和为 )=


【解析】(1)由6Sn=(an+1)(an+2)得到6Sn+1=(an+1+1)(an+1+2),两式作差,即可证明{an}为等差数列,从而求出an . (2)由an=3n﹣1,推导出bn= ),由此利用裂项求和法能求出数列{bn}的前n.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:

序号

分数段

人数

频率

1

10

0.20

2

0.44

3

4

4

0.08

合计

50

1

(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案);

(2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;

(3)甲同学的初赛成绩在,学校为了宣传班级的学习经验,随机抽取分数在的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且圆经过点.

(1)求圆的标准方程;

(2)直线过点且与圆相交,所得弦长为4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费每月用电不超过100度仍按原标准收费,超过的部分每度按0.5元计算.

Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;

Ⅱ.小明家第一季度缴纳电费情况如下:

月份

一月

二月

三月

合计

缴费金额

76

63

45.6

184.6

问小明家第一季度共用多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数,当时,.

Ⅰ.写出上的解析式;

Ⅱ.求出上的最大值;

Ⅲ.上的增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义域为,若对于任意的,都有,且时,有.

(1)判断并证明函数的奇偶性;

(2)判断并证明函数的单调性;

(3)设,若,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:y=﹣x+1与椭圆C: =1(a>b>0))相交于不同的两点A、B,且线段AB的中点P的坐标为(

(1)求椭圆C离心率;
(2)设O为坐标原点,且2|OP|=|AB|,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数

(1)函数在区间[﹣1,1]上的最小值记为,求的解析式;

(2)求(1)中的最大值;

(3)若函数[2,4]上是单调增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y,有

(1)的值;

(2)求证:对任意x,都有f(x)>0;

(3)解不等式f(32x)>4.

查看答案和解析>>

同步练习册答案