精英家教网 > 高中数学 > 题目详情
5.设一个线性回归方程y=3-2x,变量x增加一个单位时(  )
A.y平均增加2个单位B.y平均减少3个单位
C.y平均减少2个单位D.y平均增加3个单位

分析 根据回归直线方程的x的系数是-2,得到变量x增加一个单位时,函数值要平均增加-2个单位,即减少2个单位.

解答 解:∵直线回归方程为y=3-2x,
∴变量x增加一个单位时,函数值要平均增加-2个单位,即减少2个单位,
故选:C.

点评 本题考查线性回归方程,考查线性回归方程系数的意义,考查变量y增加或减少的是一个平均值,注意题目的叙述.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.(1)在极坐标系中,点P(2,-$\frac{π}{6}$)到直线l:ρsin(θ-$\frac{π}{6}$)=1的距离是$\sqrt{3}$+1.
(2)已知函数f(x)=|x-a|,若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.有A,B,C,D,E五位同学参加英语口语竞赛培训,现分别从A,B二人在培训期间参加的若干次预赛成绩中随机抽取8次得到的两组数据,这两组数据的样本茎叶图如图所示.
(1)现要从A,B中选派一人参加英语口语竞赛,从平均水平个方差的角度考虑,你认为派哪位同学参加较合适?请说明理由;
(2)若从参加培训的5位同学中任选二人参加英语口语竞赛,求A,B二人都没有参加竞赛的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在2013年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:
价格x99.51010.511
销售量y1110865
通过分析,发现销售量y对商品的价格x具有线性相关关系.
(1)求销售量y对商品的价格x的回归直线方程;
(2)欲使销售量为12,则价格应定为多少.
附:在回归直线$y=\hat bx+\hat a$中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知a,b,c>0且a+b+c=1,求证:$\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}≤3\sqrt{2}$;
(2)已知n∈N*,求证:$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{n}}}≤2\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在${(1-{x^2}+\frac{2}{x})^7}$的展开式中的x3的系数为(  )
A.210B.-210C.-910D.280

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的对称中心为原点O,焦点在x轴上,左、右焦点分别为F1、F2,上顶点和右顶点分别为B、A,线段AB的中心为D,且kOD•kAB=-$\frac{1}{2}$,△AOB的面积为2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于M、N两点,以线段OM、ON为邻边作平行四边形OMPN,点P在椭圆上,求点O到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是梯形,DC∥AB,DC=2AB,O为AC与BD的交点,E是棱PA上一点,且OE∥平面PBC,求$\frac{AE}{PE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过锥体的高的三等分点分别作平行于底面的截面,它们把锥体分成三部分,则这三部分的体积之比为1:7:19.

查看答案和解析>>

同步练习册答案