精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=cos(3x+$\frac{π}{3}$),其中x∈[$\frac{π}{6}$,m],若f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$],则m的取值范围是$\frac{2π}{9}$≤m≤$\frac{5π}{18}$.

分析 由题意可得3x+$\frac{π}{3}$∈[$\frac{5π}{6}$,3m+$\frac{π}{3}$],由f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$]结合图象可得π≤3m+$\frac{π}{3}$≤$\frac{7π}{6}$,解不等式可得.

解答 解:∵x∈[$\frac{π}{6}$,m],∴3x+$\frac{π}{3}$∈[$\frac{5π}{6}$,3m+$\frac{π}{3}$],
∵f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$],
∴π≤3m+$\frac{π}{3}$≤$\frac{7π}{6}$,解得$\frac{2π}{9}$≤m≤$\frac{5π}{18}$,
故答案为:$\frac{2π}{9}$≤m≤$\frac{5π}{18}$

点评 本题考查余弦函数的定义域和值域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$是夹角为60°的单位向量,且($\overrightarrow{c}$-3$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)≤0,则|$\overrightarrow{c}$|的取值范围是[$\frac{\sqrt{13}-\sqrt{7}}{2}$,$\frac{\sqrt{13}+\sqrt{7}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\frac{π}{2}$<α<π,tanα-$\frac{1}{tanα}$=-$\frac{3}{2}$.
(1)求tanα的值;
(2)求$\frac{cos(\frac{3π}{2}+α)-cos(π-α)}{sin(\frac{π}{2}-α)}$的值;
(3)求2sin2α-sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\overrightarrow{AC}$-$\overrightarrow{BC}$=(  )
A.$\overrightarrow{AB}$B.$\overrightarrow{0}$C.$\overrightarrow{BA}$D.$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.斜率为-2,且过两条直线3x-y+4=0和x+y-4=0交点的直线方程为2x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(3+4i)z=|3-4i|,其中i为虚数单位,则z的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线y=kx是曲线f(x)=x3+3x2-9x+1的切线,则k的值为-12或-$\frac{21}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)由圆x2+y2=4上任意一点向x轴作垂线,求垂线夹在圆周和x轴间的线段中点的轨迹方程;
(2)两根杆分别绕着定点A和B(AB=2a)在平面内转动,并且转动时两杆保持互相垂直,求杆的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an},a2=3,a4=7.
(1)求该数列的通项公式;
(2)求该数列的前10项和.

查看答案和解析>>

同步练习册答案