精英家教网 > 高中数学 > 题目详情
设函数f(x)=ex+ax-1(e为自然对数的底数),
(1)当a=1时,求在点(1,f(1))处的切线方程;
(2)讨论的函数f(x)单调性;
(3)若f(x)≥x2在(0,1)恒成立,求实数a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)当a=1时,f(x)=ex+x-1,根据导数的几何意义可求得在点(1,f(1))处的切线的斜率,再由点斜式即可得切线方程;
(2)分类讨论,利用导数的正负,可得函数f(x)单调性;
(3)将f(x)≥x2在(0,1 )上恒成立利用参变量分离法转化为a≥
1+x2-ex
x
在(0,1 )上恒成立,再利用导数研究不等式右边的函数的单调性,从而求出函数的最大值,即可求出a的取值范围.
解答: 解:(1)当a=1时,f(x)=ex+x-1,f(1)=e,f'(x)=ex+1,f'(1)=e+1,
函数f(x)在点(1,f(1))处的切线方程为y-e=(e+1)(x-1),即y=(e+1)x-1,
(2)∵f(x)=ex+ax-1,
∴f′(x)=ex+a,
∴a≥0时,f′(x)>0,函数在R上单调递增;
a<0时,在(ln(-a),+∞)上f′(x)>0,函数单调递增;
在(-∞,ln(-a))上f′(x)<0,函数单调递减;
(3)由f(x)≥x2得a≥
1+x2-ex
x

令h(x)=
1+x2-ex
x
,h′(x)=
(x-1)(x+1-ex)
x2

令k(x)=x+1-ex…(6分)k'(x)=1-ex
∵x∈(0,1),∴k'(x)<0,
∴k(x)在(0,1)上是减函数,∴k(x)<k(0)=0.
因为x-1<0,x2>0,所以,h′(x)>0,
∴h(x)在(0,1)上是增函数.
所以h(x)<h(1)=2-e,所以a≥2-e.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及函数恒成立问题,解决函数恒成立问题常常利用参变量分离法求出参数范围,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-4x+3,x∈[0,3]的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数范围内因式分解:x2-2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2|x|-3.
(Ⅰ)作出函数f(x)的图象,并根据图象写出函数f(x)的单调区间;以及在各单调区间上的增减性.
(Ⅱ)求函数f(x)当x∈[-2,4]时的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设U={1,2,3,4,5},若A∩B={2},(∁UA)∩B={4},(∁UA)∩(∁UB)={1,5},则下列结论正确的是(  )
A、3∉A且3∉B
B、3∈A且3∉B
C、3∉A且3∈B
D、3∈A且3∈B

查看答案和解析>>

科目:高中数学 来源: 题型:

一批设备价值2万元,由于使用磨损,每年比上一年价值降低50%,则4年后这批设备的价值为
 
万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|-3≤x≤4},N={x|2a-1≤x≤a+1},若M?N,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

先作与函数y=lg
1
2-x
的图象关于原点对称的图象,再将所得图象向右平移2个单位得图象C1,又y=f(x)的图象C2与C1关于y=x对称,则图象y=f(x)的解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-2,2]时,不等式x2+ax+3≥a恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案