【题目】已知抛物线C:()的焦点F到准线l的距离为2,直线过点F且与抛物线交于M、N两点,直线过坐标原点O及点M且与l交于点P,点Q在线段上.
(1)求直线的斜率;
(2)若,,成等差数列,求点Q的轨迹方程.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直线PB与CD所成角的大小为,求BC的长;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某公司一种产品的日销售量(单位:百件)关于日最高气温(单位:)的散点图.
数据:
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量关于日最高气温的线性回归方程;
(2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:的焦距为,直线()与交于两个不同的点、,且时直线与的两条渐近线所围成的三角形恰为等边三角形.
(1)求双曲线的方程;
(2)若坐标原点在以线段为直径的圆的内部,求实数的取值范围;
(3)设、分别是的左、右两顶点,线段的垂直平分线交直线于点,交直线于点,求证:线段在轴上的射影长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项为的数列各项均为正数,且,.
(1)若数列的通项满足,且,求数列的前n项和为;
(2)若数列的通项满足,前n项和为,当数列是等差数列时,对任意的,均存在,使得成立,求满足条件的所有整数构成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.
(1)求曲线的标准方程;
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com