精英家教网 > 高中数学 > 题目详情

空间四边形PABC中,PA、PB、PC两两相互垂直,∠PBA=45°,∠PBC=60°,M为AB的中点.

(1)求BC与平面PAB所成的角;

(2)求证:AB⊥平面PMC.

答案:
解析:

  解:∵PA⊥AB,∴∠APB=90°

  在RtΔAPB中,∵∠ABP=45°,设PA=a,

  则PB=a,AB=a,∵PB⊥PC,在RtΔPBC中,

  ∵∠PBC=60°,PB=a∴BC=2a,PC=a.

  ∵AP⊥PC ∴在RtΔAPC中,AC==2a

  (1)∵PC⊥PA,PC⊥PB,∴PC⊥平面PAB,

  ∴BC在平面PBC上的射影是BP.

  ∠CBP是CB与平面PAB所成的角

  ∵∠PBC=60°,∴BC与平面PBA的角为60°.

  (2)由上知,PA=PB=a,AC=BC=2a.

  ∴M为AB的中点,则AB⊥PM,AB⊥CM.

  ∴AB⊥平面PCM.

  说明:要清楚线面的垂直关系,线面角的定义,通过数据特点,发现解题捷径.


提示:

此题数据特殊,先考虑数据关系及计算、发现解题思路.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,空间四边形PABC中,PB⊥底面ABC,∠BAC=90°;过点B作BE,BF分别垂直于AP,CP于点E,F.
(1)求证:AC⊥面PAB;
(2)求证:PC⊥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间四边形PABC中,PA⊥面ABC,AC⊥BC,若点A在PB、PC上的射影分别是E、F,求证:EF⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)如图,在空间四边形PABC中,.求证:

查看答案和解析>>

科目:高中数学 来源:包头33中09-10高二下学期期中考试文科数学试题 题型:解答题

(本小题满分12分)如图,在空间四边形PABC中,.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分) 如图,空间四边形PABC中,PB⊥底面ABC,∠BAC=90°;过点BBE

BF分别垂直于APCP于点EF

   (1) 求证:AC⊥面PAB;w.w.w.k.s.5.u.c.o.m      

   (2) 求证:PCEF

 

查看答案和解析>>

同步练习册答案