精英家教网 > 高中数学 > 题目详情

【题目】四棱柱的底面ABCD为矩形,AB=1,AD=2,,则的长为( )

A. B.  C.    D.

【答案】C

【解析】分析:记A1在面ABCD内的射影为O,O在BAD的平分线上,说明BAD的平分线即菱形ABCD的对角线AC,求AC1的长.

解答:解:记A1在面ABCD内的射影为O,


∵∠A1AB=A1AD,
O在BAD的平分线上,
由O向AB,AD两边作垂线,垂足分别为E,F,连接A1E,A1F,A1E,A1F分别垂直AB,AD于E,F
AA1=3,A1AB=A1AD=60°,
AE=AF=
又四棱柱ABCD-A1B1C1D1的底面ABCD为矩形
∴∠OAF=OAE=45°,且OE=OF=,可得OA=
在直角三角形A1OA中,由勾股定理得A1O=
过C1作C1M垂直底面于M,则有C1MC≌△A1OA,由此可得M到直线AD的距离是,M到直线AB的距离是,C1M=A1O=
所以AC1 ==
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为调查高二学生上学路程所需要的时间(单位:分钟),从高二年级学生中随机抽取名按上学所需要时间分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)根据图中数据求的值.

)若从第 组中用分层抽样的方法抽取名新生参与交通安全问卷调查,应从第 组各抽取多少名新生?

)在()的条件下,该校决定从这名学生中随机抽取名新生参加交通安全宣传活动,求第组至少有一志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx+m,m∈R.
(1)求函数f(x)的单调区间.
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围.
(3)在(2)的条件下,任意的0<a<b,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则函数y=f[fx)]的零点个数为(  )

A. 7 B. 6 C. 5 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.如图,已知,图中的一系列圆是圆心分别为A、B的两组同心圆,每组同心圆的半径分别是1,2,3,,n,.利用这两组同心圆可以画出以A、B为焦点的双曲线. 若其中经过点M、N、P的双曲线的离心率分别是.则它们的大小关系是 (用连接).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax﹣1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为﹣1.
(1)求a的值及函数y=f(x)的单调区间;
(2)若x1<ln2,x2>ln2,且f(x1)=f(x2),证明:x1+x2<2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|x2<2x},集合B={x|x< },则A∩(RB)等于(
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A. 时,函数是增函数,因为,所以是增函数,这种推理是合情合理.

B. 在平面中,对于三条不同的直线 ,若 ,将此结论放在空间中也是如此,这种推理是演绎推理.

C. 命题 的否定是 .

D. 若分类变量的随机变量的观察值越小,则两个分类变量有关系的把握性越小

查看答案和解析>>

同步练习册答案